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Modeling large graphs using random graph theory

I So far, we have thought of the graph G representing the social network as
fixed.

I Idea: think of G as a realization from some random graph model.

I Question: can we find a random graph model that could have produced
the specific graph G?

I Answer: depends on how many properties of G we need to model....

I “First order” properties:
I Degree distribution(s) (scale free property)
I Connectivity
I Typical distances (small world phenomenon)
I Community structure
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Random graph models

I “First order” properties are easy to model.

I Static models describe a “snapshot” of a graph.

I Dynamic models describe the evolution of a graph as it grows are called .

I Static models that can model first order properties include:
I Erdős-Rényi model

I Chung-Lu or expected given degree model

I Norros-Reittu or Poissonian random graph

I Generalized random graph

I Configuration model

I Stochastic block model

I Dynamic models include the Albert-Barabási or preferential attachment
model and its generalizations.

I Our focus from now on will be on static models.
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Matrix form of PageRank

I Recall that our goal is to analyze the distribution of a typical vertex in
both the PageRank vector and the opinion model.

I Both problems define linear recursions on a fixed G = (V,E; A ).

I Scale-free PageRank:

Ri = Qi +
∑
j→i

c

D+
j

Rj , i ∈ V,

where Ri = |V |ri, Qi = (1− c)|V |qi, D+
j the out-degree of vertex j.

I In matrix form:

R = Q + RM, equiv. R = Q

∞∑
r=0

Mr = lim
k→∞

Q

k∑
r=0

Mr,

where R = (R1, . . . , R|V |), Q = (Q1, . . . , Q|V |), and M = ΓA, with Γ a
diagonal matrix of “weights” and A the adjacency matrix of the graph.
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Matrix form of the opinion model

I Opinion model:

R
(k+1)
i =

n∑
j=1

c(i, j)R
(k)
j +W

(k)
i + (1− c− d)R

(k)
i , i ∈ V,

where R
(k)
i denotes the opinion of vertex i at time k.

I Let R(k) = (R
(k)
1 , . . . , R

(k)
|V |)
′.

I Explicit computation gives that if we let W(k) = (W
(k)
1 , . . . ,W

(k)
|V | )

′, then

R(k) =

k−1∑
t=0

t∑
s=0

as,tC
sW(k−t) +

k∑
s=0

as,kC
sR(0)

for some matrix C ∈ [0, 1]|V |×|V | and coefficients {as,t}.
I The matrix C contains the weights each vertex assigns to its neighbors.
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Strict contractions

I Both problems lead to linear recursions on a directed graph.

I Moreover, the matrices M and C are strictly substochastic.

I The limits limk→∞Mk = limk→∞ Ck = 0 hold.

I Under a suitable Wasserstein metrics, both recursions define strict
contractions.

I Consequence: we can accurately approximate the PageRank vector and
the stationary opinion vector with finitely many iterations, i.e., with

k∑
r=0

Mr and R(k), respectively.

I Key observation: the processes are local, since every vertex is only
influenced by its inbound neighborhood of depth k!
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Locally tree-like graphs

I Most random graph models are locally tree-like.

I Sample Gn = (Vn, En; An) from any of the models mentioned today.

I Choose In uniformly in Vn and explore its in-component.
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Graph exploration on marked directed graphs

I Let G(k)i denote the subgraph of Gn = (Vn, En; An) obtained from
exploring the in-component of depth k of vertex i.

I When encountering a vertex j we include as a mark its out-degree, D+
j ,

as well as any other vertex attributes that we may need.

I In general, vertices can have marks of the form Xi ∈ S, with S a Polish
space with metric ρ.

I Let G(k)i (X) denote the graph G(k)i including its vertex marks.
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Graph isomorphism and probability space

I Definition: We say that two multigraphs G = (V,E) and G′ = (V ′, E′)
are isomorphic if there exists a bijection σ : V → V ′ such that

l(i) = l(σ(i)) and e(i, j) = e(σ(i), σ(j)), i ∈ V, (i, j) ∈ E

where l(i) is the number of self-loops of vertex i and e(i, j) is the number
of edges from vertex i to vertex j; we write G ' G′.

I Let Pn (·) = P (· |ai, 1 ≤ i ≤ n ) denote the conditional probability space
given the latent variables needed to generate the graph.
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Local weak limits

I Definition: We say that the sequence of graphs {Gn : n ≥ 1} admits a
strong coupling with a rooted tree T (X ) if for any finite set of uniformly
chosen vertices {1, . . . , `}, there exists a collection of independent copies
of T (X ), denoted {T∅(i)(X )}`i=1, such that for any k ≥ 0 and ε > 0,

Pn

⋂̀
i=1

 ⋂
i∈T∅(i)

{ρ(Xσ(i),X i) ≤ ε}, G(k)i ' T (k)
∅(i)


 P−→ 1, n→∞.

I If the marks are discrete, we can take ε = 0.

I The existence of a strong coupling implies local weak convergence in
probability (Aldous, Benjamini-Schramm).
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Strong couplings

I Strong couplings exist for all the random graph models mentioned earlier.

I All the static random graph models have as their local weak limits a
(delayed) marked, single or multi type, Galton-Watson tree.

I Strong couplings also exist for dynamic random graphs (e.g., preferential
attachment), but their local weak limits are continuous time branching
processes stopped at a random time.

I Strong couplings also exist for semi-sparse random graphs, however, the
coupled trees have distributions that depend on n, and are not locally
finite as n→∞.
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General maps on directed graphs

I Consider maps on directed graphs of the form:

R
(k+1)
i = Φ

(
Xi, R

(k)
i , η

(k+1)
i , {(Xj , ξ

(k+1)
j , R

(k)
j ) : j → i}

)
, i ∈ Vn

where (η
(k)
i , {ξ(k)j : j ∈ V }) are random noises, and the {Xi} are vertex

attributes.

I Let R(k) = (R
(k)
1 , . . . , R

(k)
n ).

I If the map Φ defines a strict contraction under a suitable metric, then

R(k) ⇒ R k →∞

I Consider the behavior of the typical vertex R
(k)
In

and RIn , where In is
uniformly chosen from Vn.
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Exchange of limits

I If Gn = (Vn, En; An) is locally tree-like and the map Φ is nice enough, we
can exchange the limits.

R(k)
∅

R
(k)
In

-

-

R∅

RIn

? ?

n→∞ n→∞

k →∞

k →∞

I R(k)
∅ and R∅ correspond to the finite time and stationary version,

respectively, of the map Φ on the local weak limit of {Gn : n ≥ 1}.
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Back to PageRank

I To understand the PageRank algorithm, we analyze the distribution of the
Page rank of a typical vertex, In, on a random graph having as its local
weak limit a (delayed) marked Galton-Watson process.

I E.g. the directed configuration model or any of the rank-1 inhomogeneous
random digraph models.

I The delay refers to the fact that the root has a different distribution than
all other nodes in the tree, due to the size-bias produced by the
exploration process.
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The limiting PageRank

I The limiting random variable R∅ is the personalized PageRank of the root
of the coupled Galton-Watson tree.

I When the in-degree and out-degree are asymptotically independent, R∅
admits the representation R∅

D
= R∗, where R∗ is the solution to the

distributional fixed-point equation:

R∗ D=
N∑
i=1

CiR∗i +Q,

where the {R∗i } are i.i.d. copies of R∗, independent of (Q,N , {Ci}), N
has the in-degree distribution and Ci = c/D+

i , with D+
i the size-biased

out-degree.
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What can R∗ tell us?

I We analyze the large deviations of R∗, since they correspond to vertices
with very high ranks.

I Since most real-world graphs are scale-free in their in-degree, we focus on
graphs where N has a regularly varying distribution.

I A heavy tail analysis leads to an interesting insight (Jelenković-OC ’12).

I The most likely path to achieving a high rank is:

P (R∗ > x) ∼ P
(

max
1≤i≤N

CiR∗i > x

)
+ P (N > x/E[CR∗]), x→∞.

Peer review Popularity

I This characterizes the webpages with very high PageRanks.

I It also explains why PageRank captures better the “relevance” of a page.
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PageRank under degree correlations

I When the in-degree and the out-degree are not asymptotically
independent, R∅ admits the representation

R∅ =

N∑
i=1

Yi +Q,

where {Yi} are i.i.d. copies of the solution to the distributional fixed-point
equation

Y
D
= C∗Q∗ +

N∗∑
j=1

C∗Yj

with {Yj} i.i.d. and independent of (Q∗,N ∗, C∗) (size-biased versions of
(Q,N , C)).

I The asymptotic behavior of R∅ changes, and the peer review effect
disappears.

I PageRank and degree centrality do essentially the same.
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Opinion dynamics on a dSBM

I Since in this model the community structure is important, we use a
directed stochastic block model (dSBM) for our analysis.

I A dSBM with K communities has edge probabilities of the form:

p
(n)
ij = P ((i, j) ∈ En) =

κ(Ji, Jj)θn
n

, i 6= j,

where κ : {1, . . . ,K} × {1, . . . ,K} → [0,∞), and Ji ∈ {1, 2, . . . ,K} is
the community label of vertex i.

I The parameter θn can be used to create dense graphs.

I We can also use a degree corrected dSBM to obtain a scale-free graph.
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Local weak limit of a dSBM

I The local weak limit of the dSBM is a multi-type Galton-Watson process
with a type for each community.

I When the in-degree and out-degree are asymptotically independent, there
is no size-bias on the in-degree (the out-degree plays no role in this
model).

I For each i ∈ Vn and each k ≥ 1, let T (k)
∅(i)(X ) denote the coupled depth-k

marked branching tree rooted at vertex i and having the distribution of
the local weak limit of G = (Vn, En; An).

I Note: It is possible to couple all n graph explorations with their local
weak limits simultaneously.
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Trajectories and stationary behavior

I For each i ∈ Vn and each k ≥ 1 let R(k)
∅(i) denote the opinion at time k of

the root ∅(i) of T (k)
∅(i)(X ), computed according to our model.

I Let Ji denote the community label of node i.

I The vector R(k) = (R(k)
∅(1), . . . ,R

(k)
∅(n))

′ does NOT have independent
components.

I Consider the trajectories (R
(0)
i , R

(1)
i , . . . , R

(k)
i ), as well as the stationary

version Ri, i ∈ Vn.

I The stationary behavior of the process {R(k) : k ≥ 0} is determined by a
limiting vector (J∅,R∅) satisfying:

R(k)
∅ ⇒ R∅, k →∞.
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Sparse approximation... cont.

I Suppose Gn is a dSBM and θn is a constant.

I Theorem: (Lin-OC ’24+) For any fixed k ≥ 1,

lim
n→∞

max
0≤r≤k

1

n

n∑
i=1

En
[∣∣∣R(k)

i −R
(k)
∅(i)

∣∣∣] = 0,

and for any bounded and continuous function f : Rk+1 → R,

1

n

n∑
i=1

f(R
(0)
i , . . . , R

(k)
i )

P−→ E
[
f(R(0)

∅ , . . . ,R(k)
∅ )
]
, n→∞.

Moreover, if R = (R1, . . . , Rn)′ is distributed according to the stationary
distribution of {R(k) : k ≥ 0}, then, for any continuous and bounded
function f : R→ R,

1

n

n∑
i=1

f(Ri)
P−→ E [f(R∅)] , n→∞.
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Computing means and variances

I Since the local weak limit is a K-type marked Galton-Watson process, the
random variables

Y(j) D= (R∅|J∅ = j),

where J∅ ∈ {1, . . . ,K} is the community label of the root ∅, are tractable.

I Note: when c+ d = 1, they satisfy a system of distributional fixed-point
equations.

I These equations allow us to compute

E[Y(j)] and Var(Y(j))

for each j ∈ {1, . . . ,K}.
I Observation: these are enough to characterize consensus and

polarization, as well as to study the effects of cognitive biases.
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Semi-sparse and dense graphs

I Although most real-world social networks are sparse, we may want to also
analyze denser graphs, e.g., whose degrees grow as log n or faster.

I In this setting, a mean-field analysis is more appropriate.

I In the PageRank and opinion model examples, whenever the mean degree
grows to infinity, we can approximate the matrices

Ms and Cs,

for s ≥ 1, with their expected values.

I The resulting approximations are provably accurate and also very
tractable.
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Final remarks

I PageRank was studied in (Avrachenkov-Kadavankandy-Litvak ’18) for an
SBM with average degree growing faster than (log n)b, with b > 1.

I The opinion model was studied in (Andreou-OC ’24) for a dSBM with
average degree growing to infinity arbitrarily slowly.

I The semi-sparse range, i.e., with average degree growing at most as
(log n)b for b ≥ 1, can be analyzed using local approximations.

I Observation: in semi-sparse to dense graphs, the interactions among the
vertices do not matter.
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Thank you for your attention.
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