Processes on random graphs: Modeling the web, social networks and opinion dynamics

Lecture 3

Mariana Olvera-Cravioto

UNC Chapel Hill molvera@email.unc.edu

February 7th, 2024

Modeling large graphs using random graph theory

- So far, we have thought of the graph G representing the social network as fixed.
- ▶ Idea: think of G as a realization from some random graph model.
- Question: can we find a random graph model that could have produced the specific graph G?

Modeling large graphs using random graph theory

- So far, we have thought of the graph G representing the social network as fixed.
- ▶ Idea: think of G as a realization from some random graph model.
- Question: can we find a random graph model that could have produced the specific graph G?
- Answer: depends on how many properties of G we need to model....

Modeling large graphs using random graph theory

- So far, we have thought of the graph G representing the social network as fixed.
- ▶ Idea: think of G as a realization from some random graph model.
- Question: can we find a random graph model that could have produced the specific graph G?
- ▶ Answer: depends on how many properties of G we need to model....
- "First order" properties:
 - Degree distribution(s) (scale free property)
 - Connectivity
 - Typical distances (small world phenomenon)
 - Community structure

Random graph models

- "First order" properties are easy to model.
- **Static** models describe a "snapshot" of a graph.
- **Dynamic** models describe the evolution of a graph as it grows are called .
- Static models that can model first order properties include:
 - Erdős-Rényi model
 - Chung-Lu or expected given degree model
 - Norros-Reittu or Poissonian random graph
 - Generalized random graph
 - Configuration model
 - Stochastic block model
- Dynamic models include the Albert-Barabási or preferential attachment model and its generalizations.
- Our focus from now on will be on static models.

Matrix form of PageRank

- Recall that our goal is to analyze the distribution of a typical vertex in both the PageRank vector and the opinion model.
- ▶ Both problems define linear recursions on a fixed $G = (V, E; \mathscr{A})$.
- Scale-free PageRank:

$$R_i = Q_i + \sum_{j \to i} \frac{c}{D_j^+} R_j, \qquad i \in V,$$

where $R_i = |V|r_i$, $Q_i = (1 - c)|V|q_i$, D_j^+ the out-degree of vertex j. In matrix form:

$$\mathbf{R} = \mathbf{Q} + \mathbf{R}M, \quad \text{equiv.} \quad \mathbf{R} = \mathbf{Q}\sum_{r=0}^{\infty}M^r = \lim_{k \to \infty}\mathbf{Q}\sum_{r=0}^{k}M^r,$$

where $\mathbf{R} = (R_1, \ldots, R_{|V|})$, $\mathbf{Q} = (Q_1, \ldots, Q_{|V|})$, and $M = \Gamma A$, with Γ a diagonal matrix of "weights" and A the adjacency matrix of the graph.

Matrix form of the opinion model

Opinion model:

$$R_i^{(k+1)} = \sum_{j=1}^n c(i,j)R_j^{(k)} + W_i^{(k)} + (1-c-d)R_i^{(k)}, \qquad i \in V,$$

where $R_i^{(k)}$ denotes the opinion of vertex *i* at time *k*.

• Let $\mathbf{R}^{(k)} = (R_1^{(k)}, \dots, R_{|V|}^{(k)})'.$

• Explicit computation gives that if we let $\mathbf{W}^{(k)} = (W_1^{(k)}, \dots, W_{|V|}^{(k)})'$, then

$$\mathbf{R}^{(k)} = \sum_{t=0}^{k-1} \sum_{s=0}^{t} a_{s,t} C^s \mathbf{W}^{(k-t)} + \sum_{s=0}^{k} a_{s,k} C^s \mathbf{R}^{(0)}$$

for some matrix $C \in [0,1]^{|V| \times |V|}$ and coefficients $\{a_{s,t}\}$.

▶ The matrix C contains the weights each vertex assigns to its neighbors.

Strict contractions

- Both problems lead to linear recursions on a directed graph.
- ▶ Moreover, the matrices *M* and *C* are strictly substochastic.
- The limits $\lim_{k\to\infty} M^k = \lim_{k\to\infty} C^k = 0$ hold.
- Under a suitable Wasserstein metrics, both recursions define strict contractions.
- Consequence: we can accurately approximate the PageRank vector and the stationary opinion vector with finitely many iterations, i.e., with

$$\sum_{r=0}^k M^r \qquad \text{and} \qquad \mathbf{R}^{(k)}, \quad \text{respectively}.$$

Key observation: the processes are local, since every vertex is only influenced by its inbound neighborhood of depth k!

Locally tree-like graphs

- Most random graph models are *locally tree-like*.
- Sample $G_n = (V_n, E_n; \mathscr{A}_n)$ from any of the models mentioned today.
- Choose I_n uniformly in V_n and explore its in-component.

Graph exploration on marked directed graphs

- Let $\mathcal{G}_i^{(k)}$ denote the subgraph of $G_n = (V_n, E_n; \mathscr{A}_n)$ obtained from exploring the in-component of depth k of vertex i.
- When encountering a vertex j we include as a mark its out-degree, D⁺_j, as well as any other vertex attributes that we may need.
- In general, vertices can have marks of the form X_i ∈ S, with S a Polish space with metric ρ.
- Let $\mathcal{G}_i^{(k)}(\mathbf{X})$ denote the graph $\mathcal{G}_i^{(k)}$ including its vertex marks.

Graph isomorphism and probability space

▶ Definition: We say that two multigraphs G = (V, E) and G' = (V', E') are isomorphic if there exists a bijection $\sigma : V \to V'$ such that

$$l(i) = l(\sigma(i)) \text{ and } e(i,j) = e(\sigma(i),\sigma(j)), \qquad i \in V, \, (i,j) \in E$$

where l(i) is the number of self-loops of vertex i and e(i, j) is the number of edges from vertex i to vertex j; we write $G \simeq G'$.

▶ Let $\mathbb{P}_n(\cdot) = P(\cdot | \mathbf{a}_i, 1 \le i \le n)$ denote the conditional probability space given the latent variables needed to generate the graph.

Local weak limits

Definition: We say that the sequence of graphs {G_n : n ≥ 1} admits a strong coupling with a rooted tree T(X) if for any finite set of uniformly chosen vertices {1,..., ℓ}, there exists a collection of independent copies of T(X), denoted {T_{Ø(i)}(X)}^ℓ_{i=1}, such that for any k ≥ 0 and ε > 0,

$$\mathbb{P}_n\left(\bigcap_{i=1}^{\ell} \left\{ \bigcap_{\mathbf{i}\in\mathcal{T}_{\emptyset(i)}} \{\rho(\mathbf{X}_{\sigma(\mathbf{i})}, \mathcal{X}_{\mathbf{i}}) \leq \epsilon \}, \, \mathcal{G}_i^{(k)} \simeq \mathcal{T}_{\emptyset(i)}^{(k)} \right\} \right) \xrightarrow{P} 1, \qquad n \to \infty.$$

- If the marks are discrete, we can take $\epsilon = 0$.
- The existence of a strong coupling implies local weak convergence in probability (Aldous, Benjamini-Schramm).

Strong couplings

- Strong couplings exist for all the random graph models mentioned earlier.
- All the static random graph models have as their local weak limits a (delayed) marked, single or multi type, Galton-Watson tree.
- Strong couplings also exist for dynamic random graphs (e.g., preferential attachment), but their local weak limits are continuous time branching processes stopped at a random time.
- Strong couplings also exist for semi-sparse random graphs, however, the coupled trees have distributions that depend on n, and are not locally finite as n → ∞.

General maps on directed graphs

Consider maps on directed graphs of the form:

$$R_i^{(k+1)} = \Phi\left(\mathbf{X}_i, R_i^{(k)}, \eta_i^{(k+1)}, \{(\mathbf{X}_j, \xi_j^{(k+1)}, R_j^{(k)}) : j \to i\}\right), \quad i \in V_n$$

where $(\eta_i^{(k)}, \{\xi_j^{(k)} : j \in V\})$ are random noises, and the $\{\mathbf{X}_i\}$ are vertex attributes.

- Let $\mathbf{R}^{(k)} = (R_1^{(k)}, \dots, R_n^{(k)}).$
- If the map Φ defines a strict contraction under a suitable metric, then

$$\mathbf{R}^{(k)} \Rightarrow \mathbf{R} \qquad k \to \infty$$

Consider the behavior of the typical vertex $R_{I_n}^{(k)}$ and R_{I_n} , where I_n is uniformly chosen from V_n .

Exchange of limits

• If $G_n = (V_n, E_n; \mathscr{A}_n)$ is locally tree-like and the map Φ is nice enough, we can exchange the limits.

R^(k)_∅ and *R*_∅ correspond to the finite time and stationary version, respectively, of the map Φ on the local weak limit of {*G_n* : *n* ≥ 1}.

- ▶ To understand the PageRank algorithm, we analyze the distribution of the Page rank of a typical vertex, *I_n*, on a random graph having as its local weak limit a (delayed) marked Galton-Watson process.
- E.g. the directed configuration model or any of the rank-1 inhomogeneous random digraph models.
- The delay refers to the fact that the root has a different distribution than all other nodes in the tree, due to the size-bias produced by the exploration process.

The limiting PageRank

- The limiting random variable R₀ is the personalized PageRank of the root of the coupled Galton-Watson tree.
- When the in-degree and out-degree are asymptotically independent, R_∅ admits the representation R_∅ ^D = R^{*}, where R^{*} is the solution to the distributional fixed-point equation:

$$\mathcal{R}^* \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\mathcal{N}} \mathcal{C}_i \mathcal{R}_i^* + \mathcal{Q},$$

where the $\{\mathcal{R}_i^*\}$ are i.i.d. copies of \mathcal{R}^* , independent of $(\mathcal{Q}, \mathcal{N}, \{\mathcal{C}_i\})$, \mathcal{N} has the in-degree distribution and $\mathcal{C}_i = c/\mathcal{D}_i^+$, with \mathcal{D}_i^+ the size-biased out-degree.

What can \mathcal{R}^* tell us?

- We analyze the large deviations of R*, since they correspond to vertices with very high ranks.
- Since most real-world graphs are scale-free in their in-degree, we focus on graphs where N has a regularly varying distribution.

What can \mathcal{R}^* tell us?

- We analyze the large deviations of R^{*}, since they correspond to vertices with very high ranks.
- Since most real-world graphs are scale-free in their in-degree, we focus on graphs where N has a regularly varying distribution.
- A heavy tail analysis leads to an interesting insight (Jelenković-OC '12).
- The most likely path to achieving a high rank is:

$$\begin{split} P(\mathcal{R}^* > x) \sim P\left(\max_{1 \leq i \leq \mathcal{N}} \mathcal{C}_i \mathcal{R}_i^* > x\right) + P(\mathcal{N} > x/E[\mathcal{C}\mathcal{R}^*]), \qquad x \to \infty. \\ \hline \mathbf{Peer \ review} \qquad \mathbf{Popularity} \end{split}$$

- This characterizes the webpages with very high PageRanks.
- It also explains why PageRank captures better the "relevance" of a page.

PageRank under degree correlations

When the in-degree and the out-degree are not asymptotically independent, R₀ admits the representation

$$\mathcal{R}_{\emptyset} = \sum_{i=1}^{\mathcal{N}} Y_i + \mathcal{Q}_i$$

where $\{Y_i\}$ are i.i.d. copies of the solution to the distributional fixed-point equation

$$Y \stackrel{\mathcal{D}}{=} \mathcal{C}^* \mathcal{Q}^* + \sum_{j=1}^{\mathcal{N}^*} \mathcal{C}^* Y_j$$

with $\{Y_j\}$ i.i.d. and independent of $(\mathcal{Q}^*, \mathcal{N}^*, \mathcal{C}^*)$ (size-biased versions of $(\mathcal{Q}, \mathcal{N}, \mathcal{C})$).

- ► The asymptotic behavior of R_∅ changes, and the peer review effect disappears.
- PageRank and degree centrality do essentially the same.

Opinion dynamics on a dSBM

- Since in this model the community structure is important, we use a directed stochastic block model (dSBM) for our analysis.
- ▶ A dSBM with K communities has edge probabilities of the form:

$$p_{ij}^{(n)} = P((i,j) \in E_n) = \frac{\kappa(J_i, J_j)\theta_n}{n}, \qquad i \neq j$$

where $\kappa : \{1, \ldots, K\} \times \{1, \ldots, K\} \rightarrow [0, \infty)$, and $J_i \in \{1, 2, \ldots, K\}$ is the community label of vertex i.

- The parameter θ_n can be used to create dense graphs.
- We can also use a degree corrected dSBM to obtain a scale-free graph.

Local weak limit of a dSBM

- The local weak limit of the dSBM is a multi-type Galton-Watson process with a type for each community.
- When the in-degree and out-degree are asymptotically independent, there is no size-bias on the in-degree (the out-degree plays no role in this model).
- For each i ∈ V_n and each k ≥ 1, let T^(k)_{Ø(i)}(𝔅) denote the coupled depth-k marked branching tree rooted at vertex i and having the distribution of the local weak limit of G = (V_n, E_n; 𝔅_n).
- Note: It is possible to couple all n graph explorations with their local weak limits simultaneously.

Trajectories and stationary behavior

- For each i ∈ V_n and each k ≥ 1 let R^(k)_{Ø(i)} denote the opinion at time k of the root Ø(i) of T^(k)_{Ø(i)}(𝔅), computed according to our model.
- Let $\mathcal{J}_{\mathbf{i}}$ denote the community label of node \mathbf{i} .
- ► The vector *R*^(k) = (*R*^(k)_{Ø(1)},...,*R*^(k)_{Ø(n)})' does NOT have independent components.
- Consider the trajectories $(R_i^{(0)}, R_i^{(1)}, \ldots, R_i^{(k)})$, as well as the stationary version R_i , $i \in V_n$.
- ► The stationary behavior of the process {R^(k) : k ≥ 0} is determined by a limiting vector (J_∅, R_∅) satisfying:

$$\mathcal{R}^{(k)}_{\emptyset} \Rightarrow \mathcal{R}_{\emptyset}, \qquad k \to \infty.$$

Sparse approximation... cont.

- Suppose G_n is a dSBM and θ_n is a constant.
- ▶ Theorem: (Lin-OC '24+) For any fixed $k \ge 1$,

$$\lim_{n \to \infty} \max_{0 \le r \le k} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_n \left[\left| R_i^{(k)} - \mathcal{R}_{\emptyset(i)}^{(k)} \right| \right] = 0,$$

and for any bounded and continuous function $f: \mathbb{R}^{k+1} \to \mathbb{R}$,

$$\frac{1}{n}\sum_{i=1}^{n}f(R_{i}^{(0)},\ldots,R_{i}^{(k)})\xrightarrow{P}E\left[f(\mathcal{R}_{\emptyset}^{(0)},\ldots,\mathcal{R}_{\emptyset}^{(k)})\right], \qquad n \to \infty.$$

Moreover, if $\mathbf{R} = (R_1, \ldots, R_n)'$ is distributed according to the stationary distribution of $\{\mathbf{R}^{(k)} : k \ge 0\}$, then, for any continuous and bounded function $f : \mathbb{R} \to \mathbb{R}$,

$$\frac{1}{n}\sum_{i=1}^{n}f(R_{i})\xrightarrow{P}E\left[f(\mathcal{R}_{\emptyset})\right], \qquad n \to \infty.$$

Computing means and variances

Since the local weak limit is a K-type marked Galton-Watson process, the random variables

$$\mathcal{Y}^{(j)} \stackrel{\mathcal{D}}{=} (\mathcal{R}_{\emptyset} | \mathcal{J}_{\emptyset} = j),$$

where $\mathcal{J}_{\emptyset} \in \{1, \dots, K\}$ is the community label of the root \emptyset , are tractable.

- ► Note: when c + d = 1, they satisfy a system of distributional fixed-point equations.
- These equations allow us to compute

 $E[\mathcal{Y}^{(j)}]$ and $Var(\mathcal{Y}^{(j)})$

for each $j \in \{1, \ldots, K\}$.

Observation: these are enough to characterize consensus and polarization, as well as to study the effects of cognitive biases.

Semi-sparse and dense graphs

- Although most real-world social networks are sparse, we may want to also analyze denser graphs, e.g., whose degrees grow as log n or faster.
- In this setting, a mean-field analysis is more appropriate.
- In the PageRank and opinion model examples, whenever the mean degree grows to infinity, we can approximate the matrices

$$M^s$$
 and C^s ,

for $s \ge 1$, with their expected values.

The resulting approximations are provably accurate and also very tractable.

Final remarks

- PageRank was studied in (Avrachenkov-Kadavankandy-Litvak '18) for an SBM with average degree growing faster than (log n)^b, with b > 1.
- The opinion model was studied in (Andreou-OC '24) for a dSBM with average degree growing to infinity arbitrarily slowly.
- ► The semi-sparse range, i.e., with average degree growing at most as (log n)^b for b ≥ 1, can be analyzed using local approximations.
- Observation: in semi-sparse to dense graphs, the interactions among the vertices do not matter.

References

Local weak convergence:

- D. Aldous and J.M. Steele. The objective method: probabilistic combinatorial optimization and local weak convergence. In Probability on discrete structures, pages 1-72. Springer, 2004.
- [2] I. Benjamini and O. Schramm. Recurrence of distributional limits of finite planar graphs. In Selected Works of Oded Schramm, pages 533-545. Springer, 2011.
- [3] A. Garavaglia, R. van der Hofstad, and N. Litvak. Local weak convergence for PageRank. Annals of Applied Probability, 30(1):40-79, 2020.
- [4] M. Olvera-Cravioto. Strong couplings for static locally tree-like random graphs. Journal of Applied Probability, 59(4):1261-1285.
- [5] R. van der Hofstad. Random Graphs and Complex Networks, Vol. II. Cambridge University Press, 2016.

References

PageRank:

- [6] K. Avrachenkov, A. Kadavankandy, and N. Litvak. *Mean field analysis of personalized PageRank with implications for local graph clustering*. Journal of statistical physics, 173:895-916, 2018.
- [7] N. Chen, N. Litvak, and M. Olvera-Cravioto. Generalized PageRank on directed configuration networks. Random Structures & Algorithms, 56(61):722-774, 2020.
- [8] P.R. Jelenković and M. Olvera-Cravioto. Information ranking and power laws on trees. Adv. in Appl. Probab., 42:1057-1093, 2010.
- M. Olvera-Cravioto. PageRank's behavior under degree correlations. Annals of Applied Probability, 31(3):1403-1442, 2021.
- [10] Y. Volkovich and N. Litvak. (2010). Asymptotic analysis for personalized web search. Adv. in Appl. Probab., 42 577-604, 2010.

Opinion dynamics:

- [11] P. Andreou and M. Olvera-Cravioto. Opinion dynamics on non-sparse networks with community structure, ArXiv:2401.04598, 2024.
- [12] N. Fraiman, T. Lin, and M. Olvera-Cravioto. Opinion dynamics on directed complex networks. Mathematics of Operations Research, to appear. 2024.

Thank you for your attention.