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Problem I

Google’s PageRank algorithm
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The Internet
I The Internet is a giant network of computers around the world connected

through “wires”.

I Think of the Internet as a giant graph consisting of vertices and edges:

vertices = servers/computers
edges = a wired connection between them
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The World Wide Web

I The WWW is a “virtual” network connecting webpages through links.

I It defines a directed graph where:

vertices = webpages
edges = directed links from one webpage to another

I The WWW was officially born in 1991 with the creation of the first
browser, a software interface that allowed users to access many different
types of files stored in many different computers.
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Modeling complex networks

I Many real-world graphs are extraordinarily big, e.g., millions or billions of
vertices.

I Most of them are fairly sparse, i.e., the ratio

# edges

# vertices

is not too big.

I Many share two key properties:
I Small world: the typical distance between vertices is small compared to

the total number of vertices.
I Scale-free: the proportion of vertices with k (inbound/outbound)

neighbors decays as a power of k, e.g.,

# vertices with k neighbors

total # vertices
≈ Ck−α
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Other properties of complex networks

I Many interesting graphs are disconnected, but may have a giant
connected component.

I Some graphs have many “clusters” (groups of vertices that have more
connections among themselves than with the rest of the graph).

I Some directed graphs exhibit high levels of correlation between the
number of inbound neighbors and the number of outbound neighbors of a
given vertex.

I These properties influence how fast a message can spread through a
network and/or how many vertices it can reach.

I They also influence which vertices are more “central” to the
network.
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Relevance and centrality

I Intuitively, a vertex in a graph is central if many paths go through it.

I One of the most popular measures of centrality is the one computed by
Google’s PageRank algorithm.

I The idea behind Google’s search engine is that relevant webpages should
be those that are central to the network.

I Why?

Links are created by people, and people will tend to create links to
webpages that have relevant/interesting content.

I How does PageRank find “central” vertices?
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The PageRank algorithm

I Let n denote the number of vertices in the WWW.

I The PageRank of webpage i, denoted ri, is a number in [0, 1] that
measures its “centrality” within the network.

I ri is a “universal” rank, i.e., it does not change from one search to
another, and it has nothing to do with the content of webpage i.

I ri depends only on the topology of the graph, i.e., on the structure
determined by the edges connecting the vertices.

I Relevance is contagious: If a relevant webpage has a link pointing to
another webpage, it makes it relevant too, but if it points to too many
webpages this effect is reduced.
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Computing the PageRank vector

I To compute the PageRank vector r = (r1, . . . , r|V |) we solve the system
of linear equations:

ri =
1− c
|V |

+ c
∑
j→i

rj

d+j
,

where the sum is taken over all the inbound neighbors to webpage i, d+j is
the number of outbound neighbors of webpage j, and c ∈ (0, 1) is a
constant known as the damping factor, usually c = 0.85.

I Why does this work?
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The random surfer interpretation

I Recall that the goal is to rank vertices according to their “centrality”
within the network.

I Imagine you had a web surfer who navigates the WWW by choosing
which links to follow at random.

I Specifically, when the surfer visits webpage i, she will choose where to go
next with equal probability among all the outbound links of webpage i.

I In other words, this is a random walk on the graph.
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Random walks on connected graphs

I Let {Xk : k ≥ 0} denote the stochastic process that tells us the identity
of the vertex our surfer visits on the kth step.

I {Xk : k ≥ 0} is a Markov chain on the set of vertices of the graph.

I If the underlying graph is connected, and we let k →∞, the proportion of
visits to vertex i converges, i.e.,

lim
k→∞

Number of visits to vertex i in the first k steps

k
= πi

exists, and corresponds to the stationary probability of vertex i.

I The stationary probability of vertex i has the interpretation of being the
long-run proportion of time that our random surfer spends in vertex i.

I When the damping factor c = 0, we have ri = πi!
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Random walks on disconnected graphs

I The problem with the WWW is that it is a disconnected graph.

I On a disconnected graph the random walk can get “stuck”.

I To fix this imagine the surfer has a coin that lands heads with probability
c and tails with probability 1− c.

I At each step, before choosing which link to follow next, she flips the coin:
I If it lands heads she chooses with equal probability any of the outbound

links if there is one, or chooses from all n webpages if there are no
outbound links.

I If it lands tails she chooses with equal probability any of the |V | webpages
in the WWW.

I The stationary probability of vertex i is equal to its PageRank, i.e.,

πi = ri!
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PageRank today

I The algorithm that Google uses today has greatly evolved since the
original PageRank.

I Each website in the WWW still has a “universal” rank, although the way
it is computed has become more sophisticated.

I The order in which the results of a search are displayed depends also on
the user’s computer, i.e., results are personalized.

I Personalized PageRank:

ri = (1− c)qi + c
∑
j→i

rj

d+j
,

where q = (q1, . . . , q|V |) is a probability vector that determines where to
go after a tail.
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Understanding Personalized PageRank

I Question: Which pages are getting highly ranked?

I To answer this question, consider the empirical distribution of the
PageRank vector on a fixed graph G = (V,E), i.e.,

1

|V |
∑
i∈V

1(ri ∈ A),

where ri is the PageRank of vertex i.

I The power-law hypothesis: On scale-free graphs, the distribution of
PageRank follows a power-law with the same exponent as the in-degree.

−→ in-degree is involved

I However, in general,

Set of high in-degree nodes 6= Set of high PageRank nodes

−→ more than just the in-degree
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Empirical distributions and the typical vertex

I We will explain which vertices get highly ranked by analyzing the
PageRank distribution on a random graph.

I In particular, our approach will focus on its large deviations.

I Note that if I is a uniformly chosen vertex in V , then

P (rI ∈ A|G) =
1

|V |
∑
i∈V

1(ri ∈ A)

I We call I a typical vertex.

I Key idea: on large random graphs, rI converges to a tractable random
variable.

I Note: the components of the PageRank vector are usually O(1/n), so we
will rescale them first.
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Other network centrality measures

I Degree centrality: for vertex i,

CD(i) = Di =
∑
j 6=i

Aij

On directed graphs we define the in-degree and out-degree separately.

I Closeness centrality: let d(i, j) denote the hop distance from vertex i to
vertex j, and define

CC(i) =
n− 1∑
j d(i, j)

where n is the number of vertices in the graph.

I Betweeness centrality: let gjk denote the number of paths connecting
vertices j and k, and let gjk(i) denote the number of those paths that go
through vertex i,

CB(i) =
∑
j

∑
k 6=j

gjk(i)

gjk
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Problem 2

Modeling opinions on social networks
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Modeling opinions on social networks

I Motivation: model the evolution of opinions on a large social network.

I As for the PageRank problem, we focus on a typical vertex.

I Goal: obtain a characterization of the typical stationary behavior of the
process being studied, that is:
I Tractable

I Easy to estimate from simple network statistics

I Valid with high probability on almost any real-world complex network
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Modeling opinions on social networks

I We model individuals as vertices on a marked directed graph
G = (V,E;A ).

I An edge from vertex i to vertex j, (i, j), is interpreted as:

“individual j listens to individual i”.

I Individuals hold opinions about a given topic.

I Opinions take values on the interval [−1, 1].
I There may be an external media that broadcasts a variety of opinions.

I At each time step k = 1, 2, . . . , each individual listens to the opinions of
all its inbound neighbors and those in the media, and then updates her
own opinion.

I Individuals weigh the opinions they listen to in a personalized way, and
may also control what media they listen to.
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Model parameters: vertex attributes

I Let (c(i, 1), c(i, 2), . . . c(i, n)) ≥ 0 be the vector of weights for her
neighbors’ opinions; c(i, k) ≡ 0 if (k, i) /∈ E.

I Weights are assumed to satisfy:

n∑
j=1

c(i, j) = c < 1 if d−i =

n∑
j=1

1(j → i) > 0.

I Individuals have an internal opinion qi ∈ [−1, 1].
I The internal opinion remains static throughout the process, and may

influence its dynamics.

I We call a vertex i with d−i = 0 a stubborn agent.
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Model parameters: vertex attributes

I Each vertex i ∈ V in the graph has a mark xi.

I Vertex marks usually include their in-degree and out-degree, but they can
also include many other vertex attributes.

I In our model, marks include:
I Internal opinion

I Community label

I Amount of trust given to each inbound neighbor

I Vertex marks are assumed to take values on a Polish space S.

I We equip S with a metric ρ.
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Model parameters: external media

I Let W
(k)
i denote the external media signal received by individual i at time

k, k = 0, 1, 2, . . . .

I The media signals {W (k)
i : k ≥ 0} are i.i.d. given xi and the

{W (k)
i : i ∈ V, k ≥ 0} are conditionally independent given {xi : i ∈ V }.

I Media signals satisfy

|W (k)
i | ≤ d+ c−

∑
j∈V

c(i, j),

for some d ∈ (0, 1).

I Let ν(xi) denote the distribution of W
(0)
i .

I Let R
(k)
i denote the opinion of individual i at time k.
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The DeGroot-Friedkin-Johnsen model

I The DeGroot-Friedkin-Johnsen model is widely used in the social
sciences for modeling opinions.

I All individuals in the graph G = (V,E;A ) update their opinions
simultaneously at step k + 1 according to the recursion:

R
(k+1)
i =

n∑
j=1

c(i, j)R
(k)
j +W

(k)
i + (1− c− d)R(k)

i , i ∈ V.

I Special cases:
I d−i ≥ 1 for all i ∈ V −→ no stubborn agents

I c+ d = 1 −→ no memory

I {W (k)
i : k ≥ 0} independent of xi −→ pure noise

I {W (k)
i : k ≥ 0} ∼ ν(xi) −→ media signal that depends on individual’s

attributes
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Goals for the model

I We want a model for the evolution of opinions on a social network that
can predict complex behavior.

I The type of graphs covered in the analysis should be able to model
real-world social networks.

I The opinions of individuals should be allowed to depend on their
particular attributes (e.g., political inclinations).

I We want to model phenomena known as confirmation bias and selective
exposure.

I The model should exhibit polarization under strong biases.

I Goal: explain when consensus is possible and quantify the potential of
various depolarizing interventions.
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Markov chain on a fixed graph

I The opinion model

R
(k+1)
i =

n∑
j=1

c(i, j)R
(k)
j +W

(k)
i + (1− c− d)R(k)

i , i ∈ V,

on a marked directed graph G = (V,E;A ) defines a Markov chain on
[−1, 1]|V |.

I Let R(k) = (R
(k)
1 , . . . , R

(k)
|V |).

I Theorem: (Fraiman-Lin-OC ’22) Suppose G is locally finite and d > 0.
Then, there exists a random vector R such that

R(k) ⇒ R, k →∞.
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Typical behavior

I Let R = (R1, . . . , R|V |) be the vector of stationary opinions.

I Goal: describe the distribution of RI , where I is uniformly chosen in V .

I RI represents the typical opinion of an individual in the network.

I The distribution of RI also describes the proportion of individuals in the
graph G having opinions in A ⊆ [−1, 1], i.e.,

P (RI ∈ A|G) =
1

|V |
∑
i∈V

1(Ri ∈ A).

I In small graphs the distribution of R will greatly depend on G.

I On large graphs, the dependence on the detailed structure of G decreases,
and only its main statistical properties matter.
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Using the model to understand opinion formation

I Models like the DeGroot-Friedkin-Johnsen model have been widely used
to study the question:

Is there consensus as k →∞?

I By consensus we mean: does the process {R(k) : k ≥ 0} converge to a
stationary distribution concentrated around one point?

I Question: Under what conditions can we expect consensus to exist?

I Other questions we explore are the effects of: confirmation bias,
selective exposure and the presence of bots.

I Assume the media signals take the form:

W
(k)
i = dZ

(k)
i + qi

c−∑
j∈V

c(i, j)


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Parameters in the simulations

I Trust on the media: parameterized by d.

I Community influence: parameterized by c.

I Assortativity: individuals are more likely to connect to individuals from
the same community than to individuals from a different community.

I Selective exposure: individuals listen to media signals that are different
depending on their community.

I Confirmation bias: individuals put more weigh on the opinions of
neighbors from their own communities.

I Bots: artificial accounts that send extreme signals and are stubborn
(modeled as separate communities).

I Influencers: individuals who are central to the network and who can
reach many people.
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The role of the media and the trust put on it

I Assortative dSBM, 2 communities having internal opinions in {−1, 1}.
I Media signals follow a truncated normal N(−0.5, 0.01) distribution.

I Everybody listens to the same media.

I µi is the mean opinion in community i (standard deviation).

I Community influence is c = 0.3 in all simulations.

(a) Lack of Trust
µ1 = 0.5 (0.0000)
µ2 = −0.5 (0.0000)

(b) Little Trust
µ1 = 0.5 (0.0141)
µ2 = −0.5 (0.0141)

(c) Moderate Trust
µ1 = 0.5 (0.0332)
µ2 = −0.5 (0.0332)

(d) High Trust
µ1 = 0.5 (0.0511)
µ2 = −0.5 (0.0511)
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Polarization due to selective exposure

I Neutral dSBM, 2 communities having internal opinions in {−1, 1}.
I Individuals choose the media signals they want to listen to, given by the

translated Beta distributions shown in the figures.
I Individuals can choose to trust neighbors from their own community more.

(a) Uniform trust to all neighbors.
µ1 = 0.47 (0.0748),
µ2 = −0.47 (0.0755)

(b) Higher trust to same community
neighbors.
µ1 = 0.50 (0.0742),
µ2 = −0.51 (0.0748)
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Polarization due to bots

I Assortative dSBM, 2 communities having internal opinions in {−1, 1}.
I Selective exposure with biased media.
I There are bots in the network that target people according to their

community label, and push them towards the extremes.

(a) Uniform trust to neighbors.
µ1 = 0.73 (0.0787),
µ2 = −0.72 (0.0837)

(b) Discount trust on artificial
accounts.
µ1 = 0.57 (0.0843),
µ2 = −0.57 (0.0877)
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Depolarizing with a balanced media

I Assortative dSBM, 2 communities having internal opinions in {−1, 1}.
I Targeted polarizing bots sending extreme signals.

I Media is neutral and the same for everyone.

(a) Uniform trust to neighbors
µ1 = 0.31 (0.1520),
µ2 = −0.31 (0.1572)

(b) Little trust in artificial accounts
µ1 = 0.09 (0.1487),
µ2 = −0.10 (0.1536)
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Depolarizing with influencers

I Degree-corrected, assortative dSBM, selective exposure, no bots.
I Top influencers in the network countermessage their followers.
I As number of influencers increases (d = 0.1 top, d = 0.3 bottom).

(a)
|µ1 − µ2| =
0.9469

(b)
|µ1 − µ2| =
0.8727

(c)
|µ1 − µ2| =
0.8168

(d)
|µ1 − µ2| =
0.7709

(e)
|µ1 − µ2| =
0.7148

(f)
|µ1 − µ2| =
0.6139

(g)
|µ1 − µ2| =
1.2106

(h)
|µ1 − µ2| =
1.1405

(i)
|µ1 − µ2| =
1.1140

(j)
|µ1 − µ2| =
1.0828

(k)
|µ1 − µ2| =
1.0519

(l)
|µ1 − µ2| =
0.9973
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Next lecture

I We will talk about how random graph theory, heavy-tailed asymptotics,
and mean-field approximations can help answer today’s questions.

I Our analysis will be based on static random graph models.

I The key technique is something known as local weak convergence.

I Explicit formulas for distributions, means and variances are obtained
through distributional fixed-point equations.

I For denser graphs, the approach uses mean-field analysis.
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