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Social networks and graphs

I The internet, the web, Facebook, X (Twitter), LinkedIn, Instagram,
WhatsApp, WeChat, Snapchat, Pinterest, Reddit, etc. are all examples of
networks.

I In social networks, connections occur among people.

I A connection between two people can mean many different things
depending on the network, e.g., friendship, hyperlinks, follower-followed
relations, etc.

I There are also many networks that do not involve people at all, e.g., the
internet, neural connections in the brain, interactions between proteins in
biology, articles in a citation network, etc.

I When analyzing networks, it is often convenient to think of them as
graphs.
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Graphs

I A graph consists on a set of vertices, V , and a set of edges E.

I Graphs can be undirected or directed.

I In an undirected graph, the relation between the vertices is symmetric,
while in a directed graph it is not.

I We will call the vertices V = {1, 2, . . . , n}, and write i→ j to mean there
is an edge (perhaps undirected) from vertex i to vertex j.

I In an undirected graph, the degree of a vertex is the number of edges
incident to it.

I In a directed graph, the in-degree is the number of inbound edges and
the out-degree is the number of outbound edges.
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Different types of graphs
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Types of graphs

I Simple graphs: a graph that has no self-loops nor multiple edges
between any two vertices.

I Multigraphs: a graph that may have self-loops or multiple edges between
two vertices.

I Connected graphs: (undirected) graphs where every pair of vertices is
connected through a path.

I Strongly connected graphs: (directed) graphs where for any pair of
vertices i and j, there exists a directed path from i to j and one from j to
i, not necessarily the same.

I Complete graphs: there is an edge between every pair of vertices in the
graph.

I Sparse graphs: the average number of edges is of the same order as the
number of vertices.
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Structures and properties

I Some structures that can be of interest when studying graphs are:
I Cycles: paths that start and end with the same vertex without repeating

vertices.

I Cliques: complete subgraphs.

I Distance between two vertices: length of the minimum path connecting
two vertices; in directed graphs the path must be directed.

I Component of a vertex: the set of vertices that can be reached through
(directed) paths from a given vertex.

I Some properties of interest:
I Diameter: the maximum distance between two points in the graph.

I Components: sizes of the largest, second largest, etc.

I Cycle lengths: the typical length of cycles in the graph.

I Clustering: the proportion of triangles (3-cliques) vs. open wedges.

I Communities: subsets of vertices that have more edges among their
vertices than with vertices outside the set.
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Some questions of interest

I Is the graph (strongly) connected?
I If not, does there exist a giant (strongly) connected component? (In a

graph with n vertices, a giant has βn vertices for some β > 0)

I What is the size of the smaller components?

I What is the diameter of the graph?

I What is the typical distance between vertices in the graph?

I What is the degree distribution, e.g.,

pn(k) =
1

n

n∑
i=1

1(di = k), di = degree of vertex i,

in the graph?

I Does the graph have clusters/communities?

I Are there vertices that are more “influential” or “central” to the network?
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The small world phenomenon

I In the late 60’s, a social psychologist named Stanley Milgram conducted a
set of experiments to try to determine the typical length of paths
connecting two individuals in the United States.

I A letter addressed to somebody in Boston would be given to a set of
randomly chosen people in different states in the Midwest, strangers to
the recipient, with the instruction to help it reach its destination by
sending it to an acquaintance.

I Result: it took an average of 6 people to connect the first sender and the
final recipient, something that became known as the

small world or six degrees of separation

phenomenon.

I Interestingly, the small world property is very common in large real-world
networks.
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Scale-free networks

I Recall that the degree of a vertex i ∈ V = {1, 2, . . . , n} in an undirected
graph, denoted di, is the number of edges incident to it.

I The proportion of vertices having degree k = 0, 1, 2, . . . , is given by

pn(k) =
1

n

n∑
i=1

1(di = k)

I We call {pn(k) : k ≥ 0} the degree distribution.

I If the degree distribution of a graph satisfies

pn(k) ∝ k−γ

for some γ > 0 (usually γ ∈ (2, 3)), we say that the graph is scale-free.

I In a scale-free graph there are vertices that have really large degrees, even
if the average degree is small.
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Random graph models

I Some real networks are too big to be analyzed exactly.

I Some may even be constantly changing.

I Idea: we can think of our specific real-world graph as just one “typical”
element of a larger class.

I If we can show that a property holds for a large class of graphs, it is likely
it will hold for our specific graph.

I Random graphs are mathematical models that can help us understand
large real-world graphs.

I No random graph model can mimic all the properties of a specific
real-world graph, so we focus on choosing models that share certain
properties that are important to the problem we want to analyze.
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Large graph limit

I Random graph models consist of a vertex set Vn = {1, 2, . . . , n} and a set
of rules for determining whether a given edge is present or not based on
some random events.

I Their mathematical analysis is usually done under the large graph limit
n→∞ on a sequence of graphs {Gn = (Vn, En) : n ≥ 1}.

I Taking the limit n→∞ simplifies computations in order for us to identify
general properties.

I In practice, establishing results in the large graph limit means that our
findings are likely to be true for sufficiently large graphs.
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Static vs. evolving models

I Random graph models can be broadly classified into two categories:
static models and evolving or growing models.

I Static models are meant to represent a “snapshot” of a large network.

I In static models Gn and Gn+1 can be totally different.

I Evolving models are meant to describe the growth of a graph as vertices
get added to the graph (usually one at a time), so Gn and Gn+1 share
most edges.

I In many evolving models edges and vertices never disappear, so Gn is a
subgraph of Gn+1.
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The Erdős-Rényi random graph

I The simplest model for a random graph is the Erdős-Rényi model.

I Consider a graph with vertex set Vn = {1, 2, . . . , n}.
I There are a total of

(
n
2

)
possible edges in the graph, and each of them will

be chosen to be present or not with a coin flip.

I Suppose you have a coin that lands heads with probability p ∈ (0, 1).

I For each pair of vertices i and j, toss the coin; if it lands heads, draw an
edge between i and j, otherwise do nothing.

I Equivalently, if A denotes the adjacency matrix of the graph, let

Aij = Aji = 1(coin-flip is a head), i 6= j,

and set Aii = 0.
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Properties of the Erdős-Rényi model

I This is the most studied random graph model there is.

I Some of its connectivity properties are:
I If np < 1 the graph will consists of only small components of size
O(logn).

I If np→ c > 1 the graph will contain a unique giant connected component,
with all other components of size O(logn).

I If np = 1 the largest component will have size O(n2/3).

I If p < (1− ε)n−1 logn the graph will most likely be disconnected.

I If p > (1 + ε)n−1 logn the graph will most likely be connected.

I When the graph is connected, it exhibits the small-world property, with
typical distance of order O(log n).
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Degree distribution

I To compute the degree distribution we can use binomial probabilities.

I Fix a vertex i ∈ Vn, then its degree is given by

Di =

n∑
j=1

χi,j , χi,j = 1((i, j) ∈ En)

I Note that the χi,j are independent Bernoulli r.v.s with parameter p.

I Therefore, since all vertices have the same distribution, for all i ∈ Vn,

P (Di = k) = P (D1 = k) = P (Bin(n, p) = k) =

(
n

k

)
pk(1− p)n−k

I Moreover, if np→ c as n→∞, we have that

lim
n→∞

P (D1 = k) =
e−cck

k!
, k ≥ 0,

i.e., a Poisson distribution with mean c.... not scale-free.
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Poisson vs. scale-free

I The Poisson distribution is light-tailed, i.e., its tail decreases
exponentially fast.

I Poisson random variables tend to take values close to their mean.

I A scale-free distribution is heavy-tailed, i.e.,

∞∑
k=0

eεkP (D = k) =∞

for all ε > 0.

I Heavy-tailed random variables can take extremely large values.

I In particular, for any k ≥ 1,

lim
m→∞

P (D > k +m|D > m) = 1

which can be interpreted as:

“Given that D is large, most likely it is huge.”
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An Erdős-Rényi graph
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Inhomogeneous random graphs

I Erdős-Rényi graphs are quite homogeneous, i.e., all the vertices have
degrees close to their common mean.

I Real-world networks are often scale-free.

I We can create random graphs that have inhomogeneous degrees by
allowing the edge probabilities to vary from vertex to vertex.

I To each vertex i ∈ Vn assign a value wi ≥ 0, and define the edge
probability

p
(n)
ij := P ((i, j) ∈ En) =

wiwj
ln
∧ 1, i 6= j,

where ln = w1 + · · ·+ wn.

I The adjacency matrix of the graph is given by:

Aij =

{
1, with probability p

(n)
ij ,

0 with probability 1− p(n)ij .
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Inhomogeneous random graphs... cont.

I Each edge is determined independently of other edges.

I This choice of edge probabilities corresponds to the Chung-Lu model.

I The expected degree of vertex i ∈ Vn is:

E[Di] =

n∑
j=1

p
(n)
ij ≈ wi

I If we let

F (x) = lim
n→∞

1

n

n∑
i=1

1(wi ≤ x),

then the degree distribution “looks” like F (in fact, pn converges to a
mixed Poisson with mixing distribution F ).

I If we set wi = p for all i ∈ Vn we get an Erdős-Rényi model.

I Scale-free graphs can be obtained by choosing F to be a power-law
distribution.
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An inhomogeneous random graph
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Graphs with communities

I Inhomogeneous random graphs can be scale-free and will have the
small-world property.

I However, they do not have community structure.

I Suppose we want to generate a graph with K communities.

I To each vertex i ∈ Vn assign a community label Ji ∈ {1, 2, . . .K}.
I Now sample edges independently using edge probabilities of the form:

p
(n)
ij = P ((i, j) ∈ En) =

κ(Ji, Jj)θn
n

, i 6= j,

where κ : {1, . . . ,K} × {1, . . . ,K} → [0,∞).

I The parameter θn can be used to create dense graphs.

I The size of community k ∈ {1, . . . ,K} is nπ
(n)
k =

n∑
i=1

1(Ji = k).
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Graphs with communities... cont.

I This construction is known as a stochastic block model.

I In order to create communities we choose κ(a, b) be “large” for a = b,
and “small” for a 6= b.

I The expected degree of a vertex in community m ∈ {1, . . . ,K} is:

E[Di|Ji = m] =

n∑
j=1

κ(m,Jj)

n
=

K∑
r=1

κ(m, r)π(n)
r

I Stochastic block models are homogeneous within each community, but
can have different expected degree from one community to another.

I Degree corrected versions of the stochastic block model can create
inhomogeneity while preserving the community structure.
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A stochastic block model
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Graphs with clustering

I The global clustering coefficient of a graph is

number of triangles

number of open wedges

I Inhomogeneous random graphs do not have significant clustering.

I In fact, inhomogeneous random graphs are locally tree-like.

I They have “long” cycles of length O(log n).

I The clustering coefficient in the models we have seen converges to zero as
n→∞.

I Real-world graphs often have positive clustering coefficients, especially
social networks.
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Graphs with clustering... cont.

I To construct a graph with non-negligible clustering, we start by
generating a bipartite graph with vertex sets Vn = {1, . . . , n} and
Am = {a1, . . . , am}, n,m ≥ 1.

I To each vertex i ∈ Vn assign a value wi ≥ 0 and define

pi =
γwi
n
∧ 1,

where γ > 0 is a fixed parameter.

I Next, for each i ∈ Vn toss a coin that lands heads with probability pi with
each of the vertices in Am, and draw an edge if it is a head.

I Let N(i) ⊆ Am be the set of neighbors of i.

I We will now construct a new graph Gn = (Vn, En), with adjacency
matrix A by setting:

Aij = 1(N(i) ∩N(j) 6= ∅)
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Graphs with clustering... cont.

I This model is called a random intersection graph.

I Let F (x) = limn→∞ n−1
∑n
i=1 1(wi ≤ x) be the weight distribution, and

assume it has finite mean.

I If we choose m = bβnc, the degree of vertex i ∈ Vn in Gn will have
(approximately) the distribution of

Poisson(βγwi) + Poisson(γ),

with the two Poisson r.v.s independent of each other.

I As with inhomogeneous random graphs, we can obtain the scale-free
property by choosing F to be a power-law distribution.

I The parameters β, γ can be used to tune the clustering coefficient to
cover the entire range (0, 1), with small values of βγ producing higher
clustering.
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An intersection graph
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The Albert-Barabási model

I All the random graph models we have seen so far are static.

I Static models do not explain how graphs grow.

I Evolving models propose a mechanism for choosing how a new vertex will
connect to the existing graph.

I Vertices are labeled in the order in which they arrive to the graph.

I One of the most famous evolving random graph models is the
Albert-Barabási graph or preferential attachment model.

I This model assumes that an incoming vertex will choose a vertex to
connect to with probability proportional to its degree.

I In other words, newcomers “prefer” to attach to high degree vertices.
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The Albert-Barabási model... cont.

I The model starts with one vertex that has a self-loop.

I At each time step, a new vertex arrives and connects by drawing one edge
either to itself, or to an existing vertex.

I Let Di(k) be the degree of vertex i after k vertices have arrived.

I When vertex k + 1 arrives it attaches to vertex i with probability:

pi(k) =

{
Di(k)
2k+1 , i = 1, . . . , k,
1

2k+1 , i = k + 1.

I This model produces scale-free graphs with degree distribution:

Pk(n) =
1

n

n∑
i=1

1(Di(n) = k) ≈ 4k−3

for large n.
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Preferential attachment models

I A generalization of the model allows each new vertex to attach using
m ≥ 1 edges, and attaches the jth edge of vertex k + 1 to vertex i with
probability:

pi(k) =
Di(k, j − 1) + δ∑k

v=1(Dv(k, j − 1) + δ)
, i = 1, . . . , k, k + 1,

where δ > −m and Di(t, j) is the degree of vertex i after t vertices have
arrived and j edges of vertex t+ 1 have been attached.

I This model generates scale-free graphs with degree distribution

Pk(n) =
1

n

n∑
i=1

1(Di(n,m) = k) ≈ Cm,δ k−τ

for large n, where τ = 3 + δ/m.
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Preferential attachment models... cont.

I In preferential attachment models, the degrees of older vertices are very
different from those of younger ones.

I In contrast, all the static models we discussed have exchangeable
vertices.

I The “time-stamp” of a vertex, i.e., its time of arrival, gives us a lot of
information about its properties.

I Older vertices tend to have larger degrees.

I The largest degree grows as O(n−1/(2+δ/m)) as n→∞.
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An Albert-Barabási graph
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References and next lecture

I The topics covered in today’s lecture are now classic.

I Textbooks:

[1] Remco van der Hofstad. Random Graphs and Complex Networks, Vol. I.
Cambridge University Press, 2016.

[2] Béla Bollobas. Random Graphs. 2nd Edition, Cambridge University Press,
2001.

I Next lecture:
I We will talk about two problems: Google’s PageRank algorithm and an

opinion dynamics model.

I Both problems can be stated as (stochastic) processes on a fixed large
directed graph.

I When we model the underlying graph as a realization from a suitable
random graph model, we can obtain interesting insights and tractable
formulas.
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