Processes on random graphs: Modeling the web, social networks and opinion dynamics

Lecture 1

Mariana Olvera-Cravioto

UNC Chapel Hill molvera@email.unc.edu

February 5th, 2024

Social networks and graphs

- The internet, the web, Facebook, X (Twitter), LinkedIn, Instagram, WhatsApp, WeChat, Snapchat, Pinterest, Reddit, etc. are all examples of networks.
- In social networks, connections occur among people.
- A connection between two people can mean many different things depending on the network, e.g., friendship, hyperlinks, follower-followed relations, etc.
- There are also many networks that do not involve people at all, e.g., the internet, neural connections in the brain, interactions between proteins in biology, articles in a citation network, etc.
- When analyzing networks, it is often convenient to think of them as graphs.

Graphs

- ► A graph consists on a set of vertices, V, and a set of edges E.
- Graphs can be undirected or directed.
- In an undirected graph, the relation between the vertices is symmetric, while in a directed graph it is not.
- We will call the vertices V = {1, 2, ..., n}, and write i → j to mean there is an edge (perhaps undirected) from vertex i to vertex j.
- In an undirected graph, the degree of a vertex is the number of edges incident to it.
- In a directed graph, the in-degree is the number of inbound edges and the out-degree is the number of outbound edges.

Types of graphs

- Simple graphs: a graph that has no self-loops nor multiple edges between any two vertices.
- Multigraphs: a graph that may have self-loops or multiple edges between two vertices.
- Connected graphs: (undirected) graphs where every pair of vertices is connected through a path.
- Strongly connected graphs: (directed) graphs where for any pair of vertices i and j, there exists a directed path from i to j and one from j to i, not necessarily the same.
- Complete graphs: there is an edge between every pair of vertices in the graph.
- Sparse graphs: the average number of edges is of the same order as the number of vertices.

Structures and properties

- Some structures that can be of interest when studying graphs are:
 - Cycles: paths that start and end with the same vertex without repeating vertices.
 - Cliques: complete subgraphs.
 - Distance between two vertices: length of the minimum path connecting two vertices; in directed graphs the path must be directed.
 - Component of a vertex: the set of vertices that can be reached through (directed) paths from a given vertex.
- Some properties of interest:
 - **Diameter:** the maximum distance between two points in the graph.
 - **Components:** sizes of the largest, second largest, etc.
 - **Cycle lengths:** the typical length of cycles in the graph.
 - **Clustering:** the proportion of triangles (3-cliques) vs. open wedges.
 - Communities: subsets of vertices that have more edges among their vertices than with vertices outside the set.

Some questions of interest

- Is the graph (strongly) connected?
 - If not, does there exist a giant (strongly) connected component? (In a graph with n vertices, a giant has βn vertices for some β > 0)
 - What is the size of the smaller components?
- What is the diameter of the graph?
- What is the typical distance between vertices in the graph?
- What is the degree distribution, e.g.,

$$p_n(k) = \frac{1}{n} \sum_{i=1}^n 1(d_i = k), \qquad d_i = \text{degree of vertex } i,$$

in the graph?

- Does the graph have clusters/communities?
- Are there vertices that are more "influential" or "central" to the network?

The small world phenomenon

- In the late 60's, a social psychologist named Stanley Milgram conducted a set of experiments to try to determine the typical length of paths connecting two individuals in the United States.
- A letter addressed to somebody in Boston would be given to a set of randomly chosen people in different states in the Midwest, strangers to the recipient, with the instruction to help it reach its destination by sending it to an acquaintance.
- Result: it took an average of 6 people to connect the first sender and the final recipient, something that became known as the

small world or six degrees of separation

phenomenon.

Interestingly, the small world property is very common in large real-world networks.

Scale-free networks

- ▶ Recall that the degree of a vertex i ∈ V = {1, 2, ..., n} in an undirected graph, denoted d_i, is the number of edges incident to it.
- The proportion of vertices having degree k = 0, 1, 2, ..., is given by

$$p_n(k) = \frac{1}{n} \sum_{i=1}^n 1(d_i = k)$$

- We call $\{p_n(k) : k \ge 0\}$ the degree distribution.
- If the degree distribution of a graph satisfies

$$p_n(k) \propto k^{-\gamma}$$

for some $\gamma > 0$ (usually $\gamma \in (2,3)$), we say that the graph is scale-free.

In a scale-free graph there are vertices that have really large degrees, even if the average degree is small.

Random graph models

- Some real networks are too big to be analyzed exactly.
- Some may even be constantly changing.
- Idea: we can think of our specific real-world graph as just one "typical" element of a larger class.
- If we can show that a property holds for a large class of graphs, it is likely it will hold for our specific graph.
- Random graphs are mathematical models that can help us understand large real-world graphs.
- No random graph model can mimic all the properties of a specific real-world graph, so we focus on choosing models that share certain properties that are important to the problem we want to analyze.

Large graph limit

- Random graph models consist of a vertex set V_n = {1, 2, ..., n} and a set of rules for determining whether a given edge is present or not based on some random events.
- Their mathematical analysis is usually done under the large graph limit n→∞ on a sequence of graphs {G_n = (V_n, E_n) : n ≥ 1}.
- ► Taking the limit n → ∞ simplifies computations in order for us to identify general properties.
- In practice, establishing results in the large graph limit means that our findings are likely to be true for sufficiently large graphs.

Static vs. evolving models

- Random graph models can be broadly classified into two categories: static models and evolving or growing models.
- Static models are meant to represent a "snapshot" of a large network.
- ln static models G_n and G_{n+1} can be totally different.
- Evolving models are meant to describe the growth of a graph as vertices get added to the graph (usually one at a time), so G_n and G_{n+1} share most edges.
- ► In many evolving models edges and vertices never disappear, so G_n is a subgraph of G_{n+1}.

The Erdős-Rényi random graph

- The simplest model for a random graph is the Erdős-Rényi model.
- Consider a graph with vertex set $V_n = \{1, 2, \dots, n\}$.
- There are a total of ⁿ₂ possible edges in the graph, and each of them will be chosen to be present or not with a coin flip.
- Suppose you have a coin that lands heads with probability $p \in (0, 1)$.
- For each pair of vertices i and j, toss the coin; if it lands heads, draw an edge between i and j, otherwise do nothing.
- Equivalently, if A denotes the adjacency matrix of the graph, let

$$A_{ij} = A_{ji} = 1$$
(coin-flip is a head), $i \neq j$,

and set $A_{ii} = 0$.

Properties of the Erdős-Rényi model

- This is the most studied random graph model there is.
- Some of its connectivity properties are:
 - ► If np < 1 the graph will consists of only small components of size O(log n).
 - If np → c > 1 the graph will contain a unique giant connected component, with all other components of size O(log n).
 - If np = 1 the largest component will have size $O(n^{2/3})$.
 - ▶ If $p < (1 \epsilon)n^{-1} \log n$ the graph will most likely be disconnected.
 - If $p > (1 + \epsilon)n^{-1} \log n$ the graph will most likely be connected.
- ▶ When the graph is connected, it exhibits the small-world property, with typical distance of order *O*(log *n*).

Degree distribution

- To compute the degree distribution we can use binomial probabilities.
- Fix a vertex $i \in V_n$, then its degree is given by

$$D_i = \sum_{j=1}^n \chi_{i,j}, \qquad \chi_{i,j} = 1((i,j) \in E_n)$$

Note that the *χ_{i,j}* are independent Bernoulli r.v.s with parameter *p*.
Therefore, since all vertices have the same distribution, for all *i* ∈ *V_n*,

$$P(D_i = k) = P(D_1 = k) = P(\mathsf{Bin}(n, p) = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

• Moreover, if $np \rightarrow c$ as $n \rightarrow \infty$, we have that

$$\lim_{n \to \infty} P(D_1 = k) = \frac{e^{-c}c^k}{k!}, \qquad k \ge 0$$

i.e., a Poisson distribution with mean *c*.... not scale-free.

Poisson vs. scale-free

- The Poisson distribution is light-tailed, i.e., its tail decreases exponentially fast.
- Poisson random variables tend to take values close to their mean.
- A scale-free distribution is heavy-tailed, i.e.,

$$\sum_{k=0}^{\infty}e^{\epsilon k}P(D=k)=\infty$$

for all $\epsilon > 0$.

- Heavy-tailed random variables can take extremely large values.
- In particular, for any $k \ge 1$,

$$\lim_{m \to \infty} P(D > k + m | D > m) = 1$$

which can be interpreted as:

"Given that D is large, most likely it is huge."

An Erdős-Rényi graph

Inhomogeneous random graphs

- Erdős-Rényi graphs are quite homogeneous, i.e., all the vertices have degrees close to their common mean.
- Real-world networks are often scale-free.
- We can create random graphs that have inhomogeneous degrees by allowing the edge probabilities to vary from vertex to vertex.
- ▶ To each vertex $i \in V_n$ assign a value $w_i \ge 0$, and define the edge probability

$$p_{ij}^{(n)} := P((i,j) \in E_n) = \frac{w_i w_j}{l_n} \wedge 1, \qquad i \neq j,$$

where $l_n = w_1 + \cdots + w_n$.

The adjacency matrix of the graph is given by:

$$A_{ij} = \begin{cases} 1, & \text{with probability } p_{ij}^{(n)}, \\ 0 & \text{with probability } 1 - p_{ij}^{(n)}. \end{cases}$$

Inhomogeneous random graphs... cont.

- Each edge is determined independently of other edges.
- This choice of edge probabilities corresponds to the Chung-Lu model.
- The expected degree of vertex $i \in V_n$ is:

$$E[D_i] = \sum_{j=1}^n p_{ij}^{(n)} \approx w_i$$

$$F(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} 1(w_i \le x),$$

then the degree distribution "looks" like F (in fact, p_n converges to a mixed Poisson with mixing distribution F).

- If we set $w_i = p$ for all $i \in V_n$ we get an Erdős-Rényi model.
- Scale-free graphs can be obtained by choosing F to be a power-law distribution.

An inhomogeneous random graph

Graphs with communities

- Inhomogeneous random graphs can be scale-free and will have the small-world property.
- However, they do not have community structure.
- Suppose we want to generate a graph with K communities.
- ▶ To each vertex $i \in V_n$ assign a community label $J_i \in \{1, 2, ..., K\}$.
- Now sample edges independently using edge probabilities of the form:

$$p_{ij}^{(n)} = P((i,j) \in E_n) = \frac{\kappa(J_i, J_j)\theta_n}{n}, \qquad i \neq j,$$

where $\kappa : \{1, \ldots, K\} \times \{1, \ldots, K\} \rightarrow [0, \infty).$

• The parameter θ_n can be used to create dense graphs.

• The size of community
$$k \in \{1, \dots, K\}$$
 is $n\pi_k^{(n)} = \sum_{i=1}^n 1(J_i = k)$.

Graphs with communities... cont.

- This construction is known as a stochastic block model.
- In order to create communities we choose κ(a, b) be "large" for a = b, and "small" for a ≠ b.
- The expected degree of a vertex in community $m \in \{1, \ldots, K\}$ is:

$$E[D_i|J_i = m] = \sum_{j=1}^n \frac{\kappa(m, J_j)}{n} = \sum_{r=1}^K \kappa(m, r) \pi_r^{(n)}$$

- Stochastic block models are homogeneous within each community, but can have different expected degree from one community to another.
- Degree corrected versions of the stochastic block model can create inhomogeneity while preserving the community structure.

A stochastic block model

Graphs with clustering

The global clustering coefficient of a graph is

number of triangles number of open wedges

- Inhomogeneous random graphs do not have significant clustering.
- In fact, inhomogeneous random graphs are locally tree-like.
- They have "long" cycles of length $O(\log n)$.
- \blacktriangleright The clustering coefficient in the models we have seen converges to zero as $n \to \infty.$
- Real-world graphs often have positive clustering coefficients, especially social networks.

Graphs with clustering... cont.

- ▶ To construct a graph with non-negligible clustering, we start by generating a **bipartite graph** with vertex sets $V_n = \{1, ..., n\}$ and $\mathcal{A}_m = \{a_1, ..., a_m\}$, $n, m \ge 1$.
- To each vertex $i \in V_n$ assign a value $w_i \ge 0$ and define

$$p_i = \frac{\gamma w_i}{n} \wedge 1,$$

where $\gamma > 0$ is a fixed parameter.

- Next, for each $i \in V_n$ toss a coin that lands heads with probability p_i with each of the vertices in A_m , and draw an edge if it is a head.
- Let $N(i) \subseteq \mathcal{A}_m$ be the set of neighbors of i.
- We will now construct a new graph G_n = (V_n, E_n), with adjacency matrix A by setting:

$$A_{ij} = 1(N(i) \cap N(j) \neq \emptyset)$$

Graphs with clustering... cont.

- This model is called a random intersection graph.
- ▶ Let $F(x) = \lim_{n \to \infty} n^{-1} \sum_{i=1}^{n} 1(w_i \le x)$ be the weight distribution, and assume it has finite mean.
- ▶ If we choose $m = \lfloor \beta n \rfloor$, the degree of vertex $i \in V_n$ in G_n will have (approximately) the distribution of

```
\mathsf{Poisson}(\beta \gamma w_i) + \mathsf{Poisson}(\gamma),
```

with the two Poisson r.v.s independent of each other.

- As with inhomogeneous random graphs, we can obtain the scale-free property by choosing F to be a power-law distribution.
- The parameters β, γ can be used to tune the clustering coefficient to cover the entire range (0, 1), with small values of βγ producing higher clustering.

An intersection graph

The Albert-Barabási model

- All the random graph models we have seen so far are static.
- Static models do not explain how graphs grow.
- Evolving models propose a mechanism for choosing how a new vertex will connect to the existing graph.
- Vertices are labeled in the order in which they arrive to the graph.
- One of the most famous evolving random graph models is the Albert-Barabási graph or preferential attachment model.
- This model assumes that an incoming vertex will choose a vertex to connect to with probability proportional to its degree.
- ▶ In other words, newcomers "prefer" to attach to high degree vertices.

The Albert-Barabási model... cont.

- The model starts with one vertex that has a self-loop.
- At each time step, a new vertex arrives and connects by drawing one edge either to itself, or to an existing vertex.
- Let $D_i(k)$ be the degree of vertex *i* after *k* vertices have arrived.
- When vertex k + 1 arrives it attaches to vertex i with probability:

$$p_i(k) = \begin{cases} \frac{D_i(k)}{2k+1}, & i = 1, \dots, k, \\ \frac{1}{2k+1}, & i = k+1. \end{cases}$$

This model produces scale-free graphs with degree distribution:

$$P_k(n) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(D_i(n) = k) \approx 4k^{-3}$$

for large n.

Preferential attachment models

► A generalization of the model allows each new vertex to attach using m ≥ 1 edges, and attaches the jth edge of vertex k + 1 to vertex i with probability:

$$p_i(k) = \frac{D_i(k, j-1) + \delta}{\sum_{v=1}^k (D_v(k, j-1) + \delta)}, \qquad i = 1, \dots, k, k+1,$$

where $\delta > -m$ and $D_i(t, j)$ is the degree of vertex i after t vertices have arrived and j edges of vertex t + 1 have been attached.

This model generates scale-free graphs with degree distribution

$$P_k(n) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(D_i(n, m) = k) \approx C_{m,\delta} k^{-\tau}$$

for large n, where $\tau = 3 + \delta/m$.

Preferential attachment models... cont.

- In preferential attachment models, the degrees of older vertices are very different from those of younger ones.
- In contrast, all the static models we discussed have exchangeable vertices.
- The "time-stamp" of a vertex, i.e., its time of arrival, gives us a lot of information about its properties.
- Older vertices tend to have larger degrees.
- ▶ The largest degree grows as $O(n^{-1/(2+\delta/m)})$ as $n \to \infty$.

An Albert-Barabási graph

References and next lecture

The topics covered in today's lecture are now classic.

Textbooks:

- [1] Remco van der Hofstad. *Random Graphs and Complex Networks, Vol. I.* Cambridge University Press, 2016.
- [2] Béla Bollobas. *Random Graphs*. 2nd Edition, Cambridge University Press, 2001.

Next lecture:

- We will talk about two problems: Google's PageRank algorithm and an opinion dynamics model.
- Both problems can be stated as (stochastic) processes on a fixed large directed graph.
- When we model the underlying graph as a realization from a suitable random graph model, we can obtain interesting insights and tractable formulas.