Processes on random graphs: Modeling the web, social networks and opinion dynamics

Lecture 1

Mariana Olvera-Cravioto
UNC Chapel Hill
molvera@email.unc.edu

February 5th, 2024

Social networks and graphs

- The internet, the web, Facebook, X (Twitter), LinkedIn, Instagram, WhatsApp, WeChat, Snapchat, Pinterest, Reddit, etc. are all examples of networks.
- In social networks, connections occur among people.
- A connection between two people can mean many different things depending on the network, e.g., friendship, hyperlinks, follower-followed relations, etc.
- There are also many networks that do not involve people at all, e.g., the internet, neural connections in the brain, interactions between proteins in biology, articles in a citation network, etc.
- When analyzing networks, it is often convenient to think of them as graphs.

Graphs

- A graph consists on a set of vertices, V, and a set of edges E.
- Graphs can be undirected or directed.
- In an undirected graph, the relation between the vertices is symmetric, while in a directed graph it is not.
- We will call the vertices $V=\{1,2, \ldots, n\}$, and write $i \rightarrow j$ to mean there is an edge (perhaps undirected) from vertex i to vertex j.
- In an undirected graph, the degree of a vertex is the number of edges incident to it.
- In a directed graph, the in-degree is the number of inbound edges and the out-degree is the number of outbound edges.

Different types of graphs

Types of graphs

- Simple graphs: a graph that has no self-loops nor multiple edges between any two vertices.
- Multigraphs: a graph that may have self-loops or multiple edges between two vertices.
- Connected graphs: (undirected) graphs where every pair of vertices is connected through a path.
- Strongly connected graphs: (directed) graphs where for any pair of vertices i and j, there exists a directed path from i to j and one from j to i, not necessarily the same.
- Complete graphs: there is an edge between every pair of vertices in the graph.
- Sparse graphs: the average number of edges is of the same order as the number of vertices.

Structures and properties

- Some structures that can be of interest when studying graphs are:
- Cycles: paths that start and end with the same vertex without repeating vertices.
- Cliques: complete subgraphs.
- Distance between two vertices: length of the minimum path connecting two vertices; in directed graphs the path must be directed.
- Component of a vertex: the set of vertices that can be reached through (directed) paths from a given vertex.
- Some properties of interest:
- Diameter: the maximum distance between two points in the graph.
- Components: sizes of the largest, second largest, etc.
- Cycle lengths: the typical length of cycles in the graph.
- Clustering: the proportion of triangles (3-cliques) vs. open wedges.
- Communities: subsets of vertices that have more edges among their vertices than with vertices outside the set.

Some questions of interest

- Is the graph (strongly) connected?
- If not, does there exist a giant (strongly) connected component? (In a graph with n vertices, a giant has βn vertices for some $\beta>0$)
- What is the size of the smaller components?
- What is the diameter of the graph?
- What is the typical distance between vertices in the graph?
- What is the degree distribution, e.g.,

$$
p_{n}(k)=\frac{1}{n} \sum_{i=1}^{n} 1\left(d_{i}=k\right), \quad d_{i}=\text { degree of vertex } i
$$

in the graph?

- Does the graph have clusters/communities?
- Are there vertices that are more "influential" or "central" to the network?

The small world phenomenon

- In the late 60's, a social psychologist named Stanley Milgram conducted a set of experiments to try to determine the typical length of paths connecting two individuals in the United States.
- A letter addressed to somebody in Boston would be given to a set of randomly chosen people in different states in the Midwest, strangers to the recipient, with the instruction to help it reach its destination by sending it to an acquaintance.
- Result: it took an average of 6 people to connect the first sender and the final recipient, something that became known as the

small world or six degrees of separation

phenomenon.

- Interestingly, the small world property is very common in large real-world networks.

Scale-free networks

- Recall that the degree of a vertex $i \in V=\{1,2, \ldots, n\}$ in an undirected graph, denoted d_{i}, is the number of edges incident to it.
- The proportion of vertices having degree $k=0,1,2, \ldots$, is given by

$$
p_{n}(k)=\frac{1}{n} \sum_{i=1}^{n} 1\left(d_{i}=k\right)
$$

- We call $\left\{p_{n}(k): k \geq 0\right\}$ the degree distribution.
- If the degree distribution of a graph satisfies

$$
p_{n}(k) \propto k^{-\gamma}
$$

for some $\gamma>0$ (usually $\gamma \in(2,3)$), we say that the graph is scale-free.

- In a scale-free graph there are vertices that have really large degrees, even if the average degree is small.

Random graph models

- Some real networks are too big to be analyzed exactly.
- Some may even be constantly changing.
- Idea: we can think of our specific real-world graph as just one "typical" element of a larger class.
- If we can show that a property holds for a large class of graphs, it is likely it will hold for our specific graph.
- Random graphs are mathematical models that can help us understand large real-world graphs.
- No random graph model can mimic all the properties of a specific real-world graph, so we focus on choosing models that share certain properties that are important to the problem we want to analyze.

Large graph limit

- Random graph models consist of a vertex set $V_{n}=\{1,2, \ldots, n\}$ and a set of rules for determining whether a given edge is present or not based on some random events.
- Their mathematical analysis is usually done under the large graph limit $n \rightarrow \infty$ on a sequence of graphs $\left\{G_{n}=\left(V_{n}, E_{n}\right): n \geq 1\right\}$.
- Taking the limit $n \rightarrow \infty$ simplifies computations in order for us to identify general properties.
- In practice, establishing results in the large graph limit means that our findings are likely to be true for sufficiently large graphs.

Static vs. evolving models

- Random graph models can be broadly classified into two categories: static models and evolving or growing models.
- Static models are meant to represent a "snapshot" of a large network.
- In static models G_{n} and G_{n+1} can be totally different.
- Evolving models are meant to describe the growth of a graph as vertices get added to the graph (usually one at a time), so G_{n} and G_{n+1} share most edges.
- In many evolving models edges and vertices never disappear, so G_{n} is a subgraph of G_{n+1}.

The Erdős-Rényi random graph

- The simplest model for a random graph is the Erdős-Rényi model.
- Consider a graph with vertex set $V_{n}=\{1,2, \ldots, n\}$.
- There are a total of $\binom{n}{2}$ possible edges in the graph, and each of them will be chosen to be present or not with a coin flip.
- Suppose you have a coin that lands heads with probability $p \in(0,1)$.
- For each pair of vertices i and j, toss the coin; if it lands heads, draw an edge between i and j, otherwise do nothing.
- Equivalently, if A denotes the adjacency matrix of the graph, let

$$
A_{i j}=A_{j i}=1(\text { coin-flip is a head }), \quad i \neq j,
$$

and set $A_{i i}=0$.

Properties of the Erdős-Rényi model

- This is the most studied random graph model there is.
- Some of its connectivity properties are:
- If $n p<1$ the graph will consists of only small components of size $O(\log n)$.
- If $n p \rightarrow c>1$ the graph will contain a unique giant connected component, with all other components of size $O(\log n)$.
- If $n p=1$ the largest component will have size $O\left(n^{2 / 3}\right)$.
- If $p<(1-\epsilon) n^{-1} \log n$ the graph will most likely be disconnected.
- If $p>(1+\epsilon) n^{-1} \log n$ the graph will most likely be connected.
- When the graph is connected, it exhibits the small-world property, with typical distance of order $O(\log n)$.

Degree distribution

- To compute the degree distribution we can use binomial probabilities.
- Fix a vertex $i \in V_{n}$, then its degree is given by

$$
D_{i}=\sum_{j=1}^{n} \chi_{i, j}, \quad \chi_{i, j}=1\left((i, j) \in E_{n}\right)
$$

- Note that the $\chi_{i, j}$ are independent Bernoulli r.v.s with parameter p.
- Therefore, since all vertices have the same distribution, for all $i \in V_{n}$,

$$
P\left(D_{i}=k\right)=P\left(D_{1}=k\right)=P(\operatorname{Bin}(n, p)=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- Moreover, if $n p \rightarrow c$ as $n \rightarrow \infty$, we have that

$$
\lim _{n \rightarrow \infty} P\left(D_{1}=k\right)=\frac{e^{-c} c^{k}}{k!}, \quad k \geq 0
$$

i.e., a Poisson distribution with mean c.... not scale-free.

Poisson vs. scale-free

- The Poisson distribution is light-tailed, i.e., its tail decreases exponentially fast.
- Poisson random variables tend to take values close to their mean.
- A scale-free distribution is heavy-tailed, i.e.,

$$
\sum_{k=0}^{\infty} e^{\epsilon k} P(D=k)=\infty
$$

for all $\epsilon>0$.

- Heavy-tailed random variables can take extremely large values.
- In particular, for any $k \geq 1$,

$$
\lim _{m \rightarrow \infty} P(D>k+m \mid D>m)=1
$$

which can be interpreted as:
"Given that D is large, most likely it is huge."

An Erdős-Rényi graph

Inhomogeneous random graphs

- Erdős-Rényi graphs are quite homogeneous, i.e., all the vertices have degrees close to their common mean.
- Real-world networks are often scale-free.
- We can create random graphs that have inhomogeneous degrees by allowing the edge probabilities to vary from vertex to vertex.
- To each vertex $i \in V_{n}$ assign a value $w_{i} \geq 0$, and define the edge probability

$$
p_{i j}^{(n)}:=P\left((i, j) \in E_{n}\right)=\frac{w_{i} w_{j}}{l_{n}} \wedge 1, \quad i \neq j
$$

where $l_{n}=w_{1}+\cdots+w_{n}$.

- The adjacency matrix of the graph is given by:

$$
A_{i j}= \begin{cases}1, & \text { with probability } p_{i j}^{(n)} \\ 0 & \text { with probability } 1-p_{i j}^{(n)}\end{cases}
$$

Inhomogeneous random graphs... cont.

- Each edge is determined independently of other edges.
- This choice of edge probabilities corresponds to the Chung-Lu model.
- The expected degree of vertex $i \in V_{n}$ is:

$$
E\left[D_{i}\right]=\sum_{j=1}^{n} p_{i j}^{(n)} \approx w_{i}
$$

- If we let

$$
F(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} 1\left(w_{i} \leq x\right),
$$

then the degree distribution "looks" like F (in fact, p_{n} converges to a mixed Poisson with mixing distribution F).

- If we set $w_{i}=p$ for all $i \in V_{n}$ we get an Erdős-Rényi model.
- Scale-free graphs can be obtained by choosing F to be a power-law distribution.

An inhomogeneous random graph

Graphs with communities

- Inhomogeneous random graphs can be scale-free and will have the small-world property.
- However, they do not have community structure.
- Suppose we want to generate a graph with K communities.
- To each vertex $i \in V_{n}$ assign a community label $J_{i} \in\{1,2, \ldots K\}$.
- Now sample edges independently using edge probabilities of the form:

$$
p_{i j}^{(n)}=P\left((i, j) \in E_{n}\right)=\frac{\kappa\left(J_{i}, J_{j}\right) \theta_{n}}{n}, \quad i \neq j
$$

where $\kappa:\{1, \ldots, K\} \times\{1, \ldots, K\} \rightarrow[0, \infty)$.

- The parameter θ_{n} can be used to create dense graphs.
- The size of community $k \in\{1, \ldots, K\}$ is $n \pi_{k}^{(n)}=\sum_{i=1}^{n} 1\left(J_{i}=k\right)$.

Graphs with communities... cont.

- This construction is known as a stochastic block model.
- In order to create communities we choose $\kappa(a, b)$ be "large" for $a=b$, and "small" for $a \neq b$.
- The expected degree of a vertex in community $m \in\{1, \ldots, K\}$ is:

$$
E\left[D_{i} \mid J_{i}=m\right]=\sum_{j=1}^{n} \frac{\kappa\left(m, J_{j}\right)}{n}=\sum_{r=1}^{K} \kappa(m, r) \pi_{r}^{(n)}
$$

- Stochastic block models are homogeneous within each community, but can have different expected degree from one community to another.
- Degree corrected versions of the stochastic block model can create inhomogeneity while preserving the community structure.

A stochastic block model

Graphs with clustering

- The global clustering coefficient of a graph is

$$
\frac{\text { number of triangles }}{\text { number of open wedges }}
$$

- Inhomogeneous random graphs do not have significant clustering.
- In fact, inhomogeneous random graphs are locally tree-like.
- They have "long" cycles of length $O(\log n)$.
- The clustering coefficient in the models we have seen converges to zero as $n \rightarrow \infty$.
- Real-world graphs often have positive clustering coefficients, especially social networks.

Graphs with clustering... cont.

- To construct a graph with non-negligible clustering, we start by generating a bipartite graph with vertex sets $V_{n}=\{1, \ldots, n\}$ and $\mathcal{A}_{m}=\left\{a_{1}, \ldots, a_{m}\right\}, n, m \geq 1$.
- To each vertex $i \in V_{n}$ assign a value $w_{i} \geq 0$ and define

$$
p_{i}=\frac{\gamma w_{i}}{n} \wedge 1
$$

where $\gamma>0$ is a fixed parameter.

- Next, for each $i \in V_{n}$ toss a coin that lands heads with probability p_{i} with each of the vertices in \mathcal{A}_{m}, and draw an edge if it is a head.
- Let $N(i) \subseteq \mathcal{A}_{m}$ be the set of neighbors of i.
- We will now construct a new graph $G_{n}=\left(V_{n}, E_{n}\right)$, with adjacency matrix A by setting:

$$
A_{i j}=1(N(i) \cap N(j) \neq \varnothing)
$$

Graphs with clustering... cont.

- This model is called a random intersection graph.
- Let $F(x)=\lim _{n \rightarrow \infty} n^{-1} \sum_{i=1}^{n} 1\left(w_{i} \leq x\right)$ be the weight distribution, and assume it has finite mean.
- If we choose $m=\lfloor\beta n\rfloor$, the degree of vertex $i \in V_{n}$ in G_{n} will have (approximately) the distribution of

$$
\text { Poisson }\left(\beta \gamma w_{i}\right)+\operatorname{Poisson}(\gamma)
$$

with the two Poisson r.v.s independent of each other.

- As with inhomogeneous random graphs, we can obtain the scale-free property by choosing F to be a power-law distribution.
- The parameters β, γ can be used to tune the clustering coefficient to cover the entire range $(0,1)$, with small values of $\beta \gamma$ producing higher clustering.

An intersection graph

The Albert-Barabási model

- All the random graph models we have seen so far are static.
- Static models do not explain how graphs grow.
- Evolving models propose a mechanism for choosing how a new vertex will connect to the existing graph.
- Vertices are labeled in the order in which they arrive to the graph.
- One of the most famous evolving random graph models is the Albert-Barabási graph or preferential attachment model.
- This model assumes that an incoming vertex will choose a vertex to connect to with probability proportional to its degree.
- In other words, newcomers "prefer" to attach to high degree vertices.

The Albert-Barabási model... cont.

- The model starts with one vertex that has a self-loop.
- At each time step, a new vertex arrives and connects by drawing one edge either to itself, or to an existing vertex.
- Let $D_{i}(k)$ be the degree of vertex i after k vertices have arrived.
- When vertex $k+1$ arrives it attaches to vertex i with probability:

$$
p_{i}(k)= \begin{cases}\frac{D_{i}(k)}{2 k+1}, & i=1, \ldots, k \\ \frac{1}{2 k+1}, & i=k+1\end{cases}
$$

- This model produces scale-free graphs with degree distribution:

$$
P_{k}(n)=\frac{1}{n} \sum_{i=1}^{n} 1\left(D_{i}(n)=k\right) \approx 4 k^{-3}
$$

for large n.

Preferential attachment models

- A generalization of the model allows each new vertex to attach using $m \geq 1$ edges, and attaches the j th edge of vertex $k+1$ to vertex i with probability:

$$
p_{i}(k)=\frac{D_{i}(k, j-1)+\delta}{\sum_{v=1}^{k}\left(D_{v}(k, j-1)+\delta\right)}, \quad i=1, \ldots, k, k+1,
$$

where $\delta>-m$ and $D_{i}(t, j)$ is the degree of vertex i after t vertices have arrived and j edges of vertex $t+1$ have been attached.

- This model generates scale-free graphs with degree distribution

$$
P_{k}(n)=\frac{1}{n} \sum_{i=1}^{n} 1\left(D_{i}(n, m)=k\right) \approx C_{m, \delta} k^{-\tau}
$$

for large n, where $\tau=3+\delta / \mathrm{m}$.

Preferential attachment models... cont.

- In preferential attachment models, the degrees of older vertices are very different from those of younger ones.
- In contrast, all the static models we discussed have exchangeable vertices.
- The "time-stamp" of a vertex, i.e., its time of arrival, gives us a lot of information about its properties.
- Older vertices tend to have larger degrees.
- The largest degree grows as $O\left(n^{-1 /(2+\delta / m)}\right)$ as $n \rightarrow \infty$.

An Albert-Barabási graph

References and next lecture

- The topics covered in today's lecture are now classic.
- Textbooks:
[1] Remco van der Hofstad. Random Graphs and Complex Networks, Vol. I. Cambridge University Press, 2016.
[2] Béla Bollobas. Random Graphs. 2nd Edition, Cambridge University Press, 2001.
- Next lecture:
- We will talk about two problems: Google's PageRank algorithm and an opinion dynamics model.
- Both problems can be stated as (stochastic) processes on a fixed large directed graph.
- When we model the underlying graph as a realization from a suitable random graph model, we can obtain interesting insights and tractable formulas.

