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Discrete data spaces are ubiquitous

⚫ Natural metric ≠ L2    
→   L1 / Hamming / Edit

⚫ Multiplicity (repetitions in the data):       r1= 0
⚫ Degeneracy (many equidistant points):    r3= r4
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Intrinsic Dimension for Discrete Data = I3D 

Overview
 Derivation of I3D
 Compare with benchmarks on fractals

ID for unweighted networks

 ID signature as summary statistics in ABC  
 ID-based generative model
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Macocco et al. 

Phys. Rev. Lett. 2023

Thanks for slides

Dimension of a (hyper) cubic lattice where the original data 
points can be (locally) projected without information loss
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How many data points fall within a volume V if the 
density is constant? Poisson distributions as in BIDE

[6] Moltchanov, D. Distance distributions in random networks. Ad Hoc Networks10, (2012)
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Measuring the volume in discrete spaces:
enumerate the lattice points with Ehrhart polynomials (1977)

R

[7] E. Ehrhart, International Series of Numerical Mathematics, Vol.35 (1977).
[8] Beck, M. & Robins, S. Computing the continuous discretely: integer-point enumeration in polyhedra. Choice Rev. 45–0923 (2007)
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Poisson process on lattices
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ID estimate through MLE → I3D
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Relevant feature:
explicit scale selection by changing R

scale R

ID

[9] Macocco et al. "Intrinsic dimension estimation for discrete metrics." Physical Review Letters 130.6 (2023) 7



Bayesian approach gives an analytical error estimate

Beta posterior (of p) parameters:
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Posterior of d

Minimize asymptotic variance: ropt ∼ 0.2 1 𝑑/
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Model validation test

empirical distribution

theoretical distribution
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Overview

► Building the ID estimator for Discrete Datasets (I3D)

 Derivation

 Benchmarks on fractals

► ID for unweighted networks

 ID signature and comparison with other fractal methods

 ID signature as summary statistics for generative models

 ID-based generative model
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John Ruskin

The Stones of Venice

1851 - 1853

Architecture of the 

Venetian Byzantine, 

Gothic and 

Renaissance periods



Behaviour of different estimators on geometrical fractals

Box counting (BC)

I3D

Fractal dimension (FD)
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Koch snowflake 

Sierpinski gasket

ID=log(4)/log(3) ∼ 1.3

ID=log(3)/log(2) ∼ 1.6



Limitations:

➔ Computationally demanding in high d

B(s) r2

r1

Methods presently used for discrete spaces

Box-Counting Fractal Dimension

[3] K. Falconer, Fractal geometry: mathematical foundations and applications, J. Wiley & Sons (2004)
[4] A. Block, W. von Bloh, and H. J. Schellnhuber, Phys. Rev. A 42, 1869 (1990)

[5] L. Niemeyer, L., Pietronero, & H.J. Wiesmann, Fractal dimension of dielectric breakdown. 
Physical Review Letters, 52(12), 1033 (1984).

Limitations:

➔ No particular adaptation for discrete spaces

B(s) ~ s-d N(r) ~ rd

log r

log N(r)
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Behaviour of different estimators on geometrical fractals

Box counting (BC)

I3D

Fractal dimension (FD)

ID=log(4)/log(3) ∼ 1.3

ID=log(3)/log(2) ∼ 1.6
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Koch snowflake 

Sierpinski gasket



Uniform distribution on square lattice

Box counting (BC)

I3D

Fractal dimension (FD)
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5d Gaussian 
lattice
distribution

model begins to be inaccurate at this scale: non-constant 
density within the selected volume

[σ ] 16



Overview

► Building the ID estimator for Discrete Datasets (I3D)

 Derivation

 Benchmarks on fractals

► ID for unweighted networks

 ID signature and comparison with other fractal methods

 ID signature as summary statistics for generative models

 ID-based generative model
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Distances on unweighted networks are discrete!

N = number of nodes

E = number of edges

Aij = adiacency matrix

Directed

Undirected
G(N,E)

Weighted

Unweighted Aij = {0,1 }

Aij = Aji
i

j

d(i,j) = shortest path  ∈  ℕ
18



I3D is stable and finds the proper ID

N=100

C
I3D computational complexity lies in the 
calculation of distances O(N(N+E))
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ID signature for 1d graph
Noisy line in 100D

link between first δ=10 neighbors

I3D

G(n,e) with ~constant degree δ

Local structure at small scales: ID1(G) = δ/2 

Information on the Non-local structure by 
analyzing the ID at the meso-scale

ε=10-4
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ID signature for real world networks

21

scale -> diameter

ID -> zero



Overview

► Building the ID estimator for Discrete Datasets (I3D)

 Derivation

 Benchmarks on fractals

► ID for unweighted networks

 ID signature and comparison with other fractal methods

 ID signature as summary statistics for generative models

 ID-based generative model
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Typical summaries are local or global
Local observables:

❖ degree distribution 

❖ clustering coefficient 
         #(Δ)/#(Δ+Λ)

Global observables:

❖ diameter  
         maxij{ d(i,j) }

❖ modularity  

23



Generative models have intractable LHD → ABC

θ support

S1
S2
S3
...

SM(θ)

Simulated Network x

S1
S2
S3
...

ε

D ( S(x(θ)), S(y) ) < ε 

S

Observed Network y
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θ support

S

ε

M(θ)

Synthesized Network x

S1
S2
S3
...

D ( S(x(θ)), S(y) ) < ε 

Observed Network y

S1
S2
S3
...

⚫ degree distribution
⚫ local clustering coeff
⚫ closeness
⚫ …

D ( S(x(θ)), S(y) )  =       max     | IDR(x(θ)) - IDR(y) |
R∈{1,…,diam(y)}

25

Generative models have intractable LHD → ABC



Sequential Monte Carlo - ABC

 M(θ)

    +

accept/reject

prior t=0 posterior t=1 prior t=1 posterior t=2

 M(θ)

    +

accept/reject

[23] Sisson, Scott A., Yanan Fan, and Mark M. Tanaka. "Sequential monte carlo without likelihoods." PNAS 104.6 (2007)     [24] 

Beaumont, Mark A., et al. "Adaptive approximate Bayesian computation." Biometrika 96.4 (2009) 26



Erdös-Rényi Each edge is established 
with probability p

[25] P. Erdős, A. Rényi, et al., “On the evolution of random graphs,” Publ. Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 1 7–60, 1960.

p p p

N=300   pgt=0.01

observed network

ER I3D
reference ID

π(p)=U(0, 0.025)
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The new node is wired to     
m = int(E/N) existing nodes 
according to pi= kγ

i/Σjkj
γ

Create a ring network with k = int(2*E/N) nearest 
connections
Rewire each edge with prob p

[26] L. Krapivsky, S. Redner, and F. Leyvraz, “Connectivity of growing random networks,” Phys. Rev. Lett., vol. 85, pp. 4629 –4632, 21 Nov. 2000.
[27] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998 28





Planted Partition (PP): building communities

⚫ number of communities L
⚫ nodes per community k
⚫ conn prob within community: pin

⚫ conn prob outside community: pout

[28] A. Condon and R. Karp, “Algorithms for graph partitioning on the planted partition model,” Random Structures & Algorithm s, vol. 18, no. 2, pp. 116–140, 2001 30



model struggles with large-diameter real networks

US power stations: N=4941  E=6594 

obtained by fitting betweennes, page rank
degree distribution and clustering coeff

our procedure, trying to reproduce
only the ID

!! It is far from trivial to devise growth mechanisms based that preserve the large scale structure !!
[27] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998
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ID-based generative model
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