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Computing the PDF

Goal: Compute p(x,t), the probability that X (t) = x.

The Chemical Master Equation (CME):

dp(da; 25 —p(z,t) )_wi(z) + ) _plx — sp, wi(z — si)
k k

Enumerate the state space: X = {xl, To,T3, .. }

Form the probability density state vector P(X, ) ; R+ — 61

P(X,t) := [p(z1,t) pleo,t) plxs,t) ... 11

CME can now be written in matrix form:

P(X,t) = A -P(X,t)



The Finite State Projection Approach

e A finite subset is appropriately
chosen
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The Finite State Projection Approach

¥

e A finite subset is appropriately
chosen

9%

e Transitions into subset are deleted

/)

 Remaining (infinite) states are
projected into a single state

P

N

The projected system can be solved exactly!



Guaranteed Error Bounds

Notation: For a matrix A, let A; to be the principle submatrix
of A indexed by J, where J = [m1...my].

Projection Error Bounds Consider any Markov process de-
scribed by the Forward Kolmogorov Equation:

P(X:;t) = A -P(X;t).

If for an indexing vector J: 11 exp(A;T)P(X;;0) > 1 —¢, then

1111



The FSP Algorithm

given initial prob. vector P(X,0); final time T"; error tol. ¢ >0
select an initial finite subset X’y that includes support of P(X,0)

repeat

1. expand projection: Xj .= X;U Xy
2. form projected system: Aj;

3. compute probability for projection: exp(A;T)P(X;;0)

until 17 exp(A;T)P(X;;0) > 1 —¢

end

Certificate: ||P(X;,T) —exp(A;jT)P(X;;0)||1 <e€



Application to a Stochastic Switch
V

TWO repreSSOrS I S2 Gene S2 Promoter ].

uandv %

Gardner, et al., Nature, 2000

U
u and v inhibit each other u and v degrade
w w
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A Sample Trajectory

Trajectory simulation
using Gilespie’s SSA

Initial conditions

0 =17

Parameters
X1 — 50 ﬁ — 2.9
oy = 106 Y = 1
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Joint pdf Computation using FSP Algorithm

Time = 0.2 5; Emor= 1.2694e-32




A Stochastic Switch Involved in Disease:
Pyelonephritis Assoicated Pili (PAP)

Blood supply

E. coliascends
to kidney

P. fimbriae bind to renal
tubular epithelial cells

Credit: University of Alabama at Birmingham,
Department of Pathology

Type 1 fimbriated E. coli

S
\B
Urethra

Contamination of periurethral
area with uropathogenic E. col
that has colonized the bowel

Credit: J.B. Kaper et al Nature Rev. Microbiol
(2004) 2, 123-140 (modified)




Application of FS

- 10 the

Pap Switch Model

Lrp

What is the probability of being
in State g, attime T?

\_
State g, (

ON \F;\\R‘G R/A

Piliation takes place
1f gene 1s ON at a
specific time: T

State 9, OFF

State g,
OFF



Accuracy and

—fficiency

Relative error

Method Number of simulations Time (s) in switch rate (%)
FSP Does not apply” <4 <0.5
SSA® 1.25% 10° ~18 38.8
SSA 25X 10° ~35 27.3
SSA 5.0X 10 ~70 9.9
SSA 10.0 X 10° ~ 140 8.5



A More Detailed Stochastic model of the pap Switch
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Solving The Master

—quation Using FSP

Starting from any initial state at time t=0,
the probability of finding a cell in a given
state(s) at t=T can be accurately computed:

p(Xy,T) = exp(A,T)p(X;,0) 0

Allows us to compute probability of an ON state
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=Xperimental Assay

Overnight Culture
No Induction

| |
\
\V

l Dilute 1:5000

% Arabinose

1 million cells

per sample
Flow Cytometry




Model Prediction
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Computing the Statistical Moments

Moment Closure Methods



Moment Computations

Moment Dynamics

dz[f] = 5 E[w(X)]
dE[iziXT] = SE[w(X)XT] + E[XwT(X)]ST + S diag(E[w(X)]) ST

e Affine propensity. Closed moment equations.
e (Quadratic propensity. Not generally closed.

— Mass Fluctuation Kinetics (Gomez-Uribe, Verghese)
— Derivative Matching (Singh, Hespanha)



Mass Fluctuation Kinetics (MFK) Moment Closure

Define Xa := X —E(X), and = :=E(XaXA).

We can write the propensity vector as follows

- wi(x) | a1 + b{:c + 21 Qqx

w(x) =

wyr(x) | _a,M—I—bﬂ:c—l—azTQMa:_

where Q. IS symmetric.

Note that this form is general enough to fit propensities arising
from all the elementary reactions.



Dynamics of the Mean

dE[X]
o= = S E[w(X)]
E(wi(X)) = E(ap+bp X + X' QpX)

ap + bEE(X) + E((Xa + EXNTQL(X A + E(X)))
wp(B(X)) + E(XAQrXA)
wi(E(X)) + tr(Qp=)

Defining z(X) = [tr(Q1X) ... tr(QyX)]L, we have

%E(X) = Sw(E(X)) + 52().




Dynamics of the Covariance and MFK Closure

dE[X X 1]

——— = SEw()X'] +E[Xw! (X)]ST + 5 diag(E[w(X)]) ST

Moment closure assumption
The MFK approximation posits that Vz, 3, k:

E[(X; — (X)) (X; — E(X;)) (X}, — E(Xp))| = 0.

This enables the replacement of 3rd order moments with lower
moments

The system is said to be closed and can be solved

> = SJ,(E(X)) - T+ - JIEX))ST + S diag(w(E(X)))ST 4+ S diag(z(X))S*
where Jy, is the Jacobian matrix of w(-).



Other Moment Closure Methods

Another moment closure method is Derivative-Matching.

Moment closure assumption

The Derivative-Matching approximation posits that:
E(X; X)) E(X; X)) E(X; XE)
E(X)E(X,)E(Xy)

E(X;X;X};) = Vi, 5, k.

This is consistent with a Lognormal moment closure.



Moment-Based Inference




Moment-Based Inference

A simplified model of gene expression

@_,@ A0
@@= prnan
c3
e —@e + © AB “ AB+C,

A is transcription factor

_ Parameter | C1 Co C3 C4
B is a gene Vi | 1.500-10"% 8.000-10"* 1.000-10"° 4.000-10""
C is protein product s 1 s 1 st st
Initial conditions 20,000 sample paths of length T=10,000s

A=50 molecules (generated using SSA algorithm)

B=1 (gene is inactive)
AB=0 molecules C mol. ] [

C=0 molecules count | [ )

0s 10,000's "

Example adapted from Zechner et al., PNAS, 2012



Moment

Data: Trajectories samples over time

C mol.

count

C mol.

count

C mol.

count

A

O0s

[
»

10,000 s

1 [ :

10,000 s

»

Os

»
»

10,000 s

t1 to . t10

{z; Y, 1=1,...,10
M = 20,000 samples

Based Inference: Data Model

Data modeling and uncertainty

kth-order moment estimates:

; 2 k=1
{MZ ﬂl(tl))k k> 1.

CLT: For large M, moment estimates are
normally distributed: fix(t)) ~ N (ug(t), o2 (t))

Estimator variance a%(tl) can be estimated:

Variance of Mean estimator:
1
2 ~D
o)) = — t
1 ( l) MMZ( l)
Variance of variance estimator:

o3(t) = 37 (e = 317300




Moments Model
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Closing the System of Moments

A closed system is obtained by replacing the 3rd-order cumulants by O.

This is equivalent to replacing the 3rd-order by functions of the lower
order moments:

3 1 2 1 2 1 2 1 1 1

WABD = MHA " UWBD + UB *HWAD + UD - WA — 2 A - 4B UD,
2

1hop = —2- up - pa + 2 uag - ph + pp - g,

3 1 2 1 2 1 2 1 1 1

HWABC = UA " MWBC + UB - WACc + Mo - Wap — 2 [ha - UB - UC,

2
ige = —2-puh - pup +2-pan - pup + ph s

Moment Model: .

e A(0)p + B(09) f(i2)

i is the vector of 1st- and 2nd-order moments



Moment-Based Inference

W%m#%ﬂﬂ (0)16) - p(6)
k=11[=1

Used Metropolis-Hastings MCMC:

For each parameter in 6, a log-normal proposal distribution was
used

4
q(enewwold) - .Hl q(egewleggld) Q(Qgeww;ld) - LZN(In 9§Id,v]2)
d—

Inferred Parameter Vector

Parameter C1 Co C3 Cq
0; 1.500-107° 8.000-10"* 1.000-10"° 4.000-10""
0; MAP 1.380-1072 7.050-10"% 9.865-10"*%* 3.988-10"1!
3_1 8_1 3_1 3_1

Oprap = arg max p(0|i1, fi)



Calibrated Model vs. Reference Model

t=3,000s t=7,000s
> t=1,000s t=2,000s |
o — Calibrated Model
=
o — Reference Model
E
500 O 1,000 O 1,500 O 2,000
protein count protein count protein count protein count
5
500 5 x 10
- :
= 2 — Reference Model; MC
c S V¥ Reference Model: SSA
g - — Calibrated Model: MC
o = * Calibrated Model: SSA
0 x10° o 0 x 10°
0 5 10 0 5 10

Timeins Timeins



Density-

Based Inference




Density-Based Estimation

T NaCl Pressureout 4

Yeast Osmoregulation

R
gﬁ“*ﬁ

gene

9pRISe) NdVIN

Muzzey et. al, Cell (2009)

Goal: |[dentify model of mRNA transcription



MBNA Measurements

e mRNA copy numbers are measured using mRNA FISH method
e histograms give snapshots of pdf.



|dentifying Gene Parameters from mRNA Data

¢ kdeg %&
3 gene states %

[ prod
kOl w12(Hog™) é
b %

klo k21

wi2(Hogl™) = ki3[Hog1™]"

/ parameters are unknown



Modeling Hog1* Nuclear Concentration

—
T

o
o

Activated Hogl

time (min)

ot

Hogl(t) = (1 — e_rlt) e [NaCl]

Hogl(t)

Hogl™(t) = 1= Hogl(t)/M




Density-Based Estimation

Given N numbered cells.

Suppose the nth cell was measured at time ¢,, to have exactly
myn copies of MRNA.

The likelihood that the data from the N cells came from the
model with parameter 0 is given by:

N
L(D|0) = ][ p(mnl6,tn)

n=1
p(mnl6,ty) is given by the chemical master equation

Oprs7, = arg m@ax log L(D|6)



Finite State

Projection

P; , := P(state = S;, mRNA = m).

Enumerate all the possible states into the vector:

Solve

glﬁ Since the gene can take one of
2,0
: three possible states, N =3
 Pno _
P .
P, ’ The maximum number of mMRNA
; we expect to see is 150
- PNl —
; Truncate P — Ppgp

Prsp = A(0)Prgp

|Prsp(t) — P(t)||p < 107°
0 < t < 80min



Inferring Gene Parameters from mRNA Data

¢ kdeg &%
3 gene states! %

[ prod
kOl w12(Hog™) é
M @

klo k21
kor = 1.3063 x 10~3s~1 koy = 3.7763 x 107 3s71
k1o = 6.4891 x 10~ *s~! k1o = 1.1691 x 109°Mol"s~1

Kgeg = 3.7282 x 10~3Mol~1s™!  kproa = 7.8818 x 1072s7*

n = 29444 ’UJlQ(HOgl*) = le[Hogl*]n



Probability

mMRNA Distributions (0.1M NaCl)
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Probability

MRNA Distributions (0.2M NaCl)
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Probability

MRNA Distributions (0.3M NaCl)

mRNA Distributions (0.4M NaCl)

0.08 | 0 min 2 min 4 min 6 min 8 min 0.08 | 0 min 2 min 4 min 6 min 8 min
0.04/ 0.04/
| 1 \ I . ) | 2
0b-——- | 0L—m |
0 50 O 50 50 O 50 O 50 >, 0 50 0 50 O 50 0O 50 50
0.08 , , . , = 0.08 .
10 min 15 min 20 min 25 min 30 min — 10 min
0.04 '% 0.04
O
0 @ 0
0 50 O 50 50 O 50 O 50 — 0 50
0.08 aR 0.08
) 35 min 40 min 45 min 50 min 55 min ] 35 min
0.04 X 0.04
1
0 0
0 50 O 50 0O 50 O 50 O 50 0 50 0 50 O 50 O 50 O 50
Number of mRNA Number of mRNA

0.3M NaCl 0.4M NaCl



Directions




Computational Analysis of Stochastic Kinetics

Master SDE Moment :
. Monte Carlo .. : Hybrid
Equation Approximation Dynamics
»State Aggregation »Speeding up SSA pLinear Noise Approx. »Better moment closure | |»Stoch/deterministic

»Sparse computations
»Basis expansion
»Sensitivity Analysis
»Inference

pVariance reduction
»Sensitivity Analysis
pStochastic optimization
pInference

»Langevin equations

pSpatial models
»Inference

»Time-scale separation

»Error bounds
»Reduced state-space
»Inference

»SSA/FSP

pLarge count/low count
partition

»Inference

Application in Biology

Reverse Engineering

Synthetic Biology

Noise Noise Noise Effect of Noise Design Parameter
& Function Exploitation Suppression on Circuits Architecture Selection

Role of Effect on Recurring Robust Noise Fundamental
Regulation Fitness Motifs obusiness transmission Limitations




