
un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

Faculty of Science

Likelihood Analysis of
Gaussian Graphical Models

Steffen Lauritzen
Department of Mathematical Sciences

Swiss Winterschool 2015, Lecture 2
Slide 1/28

un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

Consider the case where ξ = 0 and a sample
X 1 = x1, . . . ,X n = xn from a multivariate Gaussian
distribution Nd(0,Σ) with Σ regular. Using the expression
for the density, we get the likelihood function

L(K ) = (2π)−nd/2(detK )n/2e−
�n

ν=1(x
ν)�Kxν/2

∝ (detK )n/2e−
�n

ν=1 tr{Kxν(xν)�}/2

= (detK )n/2e− tr{K
�n

ν=1 x
ν(xν)�}/2

= (detK )n/2e− tr(Kw)/2. (1)

where

W =
n�

ν=1

X
ν(X ν)�

is the matrix of sums of squares and products.
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Writing the trace out

tr(KW ) =
�

i

�

j

kijWji

emphasizes that it is linear in both K and W and we can
recognize this as a linear and canonical exponential family
(Barndorff-Nielsen, 1978) with K as the canonical parameter
and −W /2 as the canonical sufficient statistic. Thus, the
likelihood equation becomes

E(−W /2) = −nΣ/2 = −w/2

since E(W ) = nΣ. Solving, we get

K̂
−1 = Σ̂ = w/n

in analogy with the univariate case.
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Rewriting the likelihood function as

log L(K ) =
n

2
log(detK )− tr(Kw)/2

we can of course also differentiate to find the maximum,
leading to the equation

∂

∂kij
log(detK ) = wij/n,

which in combination with the previous result yields

∂

∂K
log(detK ) = K

−1.

The latter can also be derived directly by writing out the
determinant, and it holds for any non-singular square matrix,
i.e. one which is not necessarily positive definite.
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The likelihood function based on a sample of size n is

L(K ) ∝ (detK )n/2e− tr(Kw)/2,

where w is the (Wishart) matrix of sums of squares and
products and Σ−1 = K ∈ S+(G).
Define the matrices T u, u ∈ V ∪ E as those with elements

T
u
ij =






1 if u ∈ V and i = j = u

1 if u ∈ E and u = {i , j}
0 otherwise.

;

then T u, u ∈ V ∪ E forms a basis for the linear space S(G)
of symmetric matrices over V which have zero entries ij
whenever i and j are non-adjacent in G.
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Further, as K ∈ S(G), we have

K =
�

v∈V
kvT

v +
�

e∈E
keT

e (2)

and hence

tr(Kw) =
�

v∈V
kv tr(T

v
w) +

�

e∈E
ke tr(T

e
w);

leading to the log-likelihood function

l(K ) = log L(K ) ∼ n

2
log(detK )− tr(Kw)/2

=
n

2
log(detK )

−
�

v∈V
kv tr(T

v
w)/2 +

�

e∈E
ke tr(T

e
w)/2.
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Hence we can identify the family as a (regular and canonical)
exponential family with − tr(T uW )/2, u ∈ V ∪ E as
canonical sufficient statistics.

The likelihood equations can be obtained from this fact or by
differentiation, combining the fact that

∂

∂ku
log det(K ) = tr(T uΣ)

with (2). This eventually yields the likelihood equations

tr(T u
w) = n tr(T uΣ), u ∈ V ∪ E .
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The likelihood equations

tr(T u
w) = n tr(T uΣ), u ∈ V ∪ E .

can also be expressed as

nσ̂vv = wvv , nσ̂αβ = wαβ , v ∈ V , {α, β} ∈ E .

We should remember the model restriction
K = Σ−1 ∈ S+(G).
This ‘fits variances and covariances along nodes and edges in
G’ so we can write the equations as

nΣ̂cc = wcc for all cliques c ∈ C(G).

General theory of exponential families ensure the solution to

be unique, provided it exists.
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For K ∈ S+(G) and c ∈ C, define the operation of adjusting
the c-marginal as follows: Let a = V \ c and

McK =

�
n(wcc)−1 + Kca(Kaa)−1Kac Kca

Kac Kaa

�
. (3)

This operation is clearly well defined if wcc is positive definite.

Recall the identity

(KAA)
−1 = ΣAA − ΣABΣ

−1
BBΣBA.

Switching the role of K and Σ yields

ΣAA = (K−1)AA =
�
KAA − KABK

−1
BBKBA

�−1

and hence

Σcc = (K−1)cc =
�
Kcc − Kca(Kaa)

−1
Kac

�−1
.
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Thus the C -marginal covariance Σ̃cc corresponding to the
adjusted concentration matrix becomes

Σ̃cc = {(McK )−1}cc
=

�
n(wcc)

−1 + Kca(Kaa)
−1

Kac − Kca(Kaa)
−1

Kac
�−1

= wcc/n,

hence McK does indeed adjust the marginals. From (3) it is
seen that the pattern of zeros in K is preserved under the
operation Mc , and it can also be seen to stay positive
definite.

In fact, Mc scales proportionally in the sense that

f {x | (McK )−1} = f (x |K−1)
f (xc |wcc/n)

f (xc |Σcc)
.
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Next we choose any ordering (c1, . . . , ck) of the cliques in G.
Choose further K0 = I and define for r = 0, 1, . . .

Kr+1 = (Mc1 · · ·Mck )Kr .

Then we have: Consider a sample from a covariance selection

model with graph G. Then

K̂ = lim
r→∞

Kr ,

provided the maximum likelihood estimate K̂ of K exists.

This algorithm is also known as Iterative Proportional Scaling

or Iterative Marginal Fitting.
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Consider an undirected graph G = (V ,E ). A partitioning of
V into a triple (A,B , S) of subsets of V forms a
decomposition of G if

A⊥g B | S and S is complete.

The decomposition is proper if A �= ∅ and B �= ∅.
The components of G are the induced subgraphs GA∪S and
GB∪S .

A graph is prime if no proper decomposition exists.
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Example
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The graph to the left is prime

Decomposition with A = {1, 3}, B = {4, 6, 7} and S = {2, 5}

3 6

1 5 7

2 4

� �� � �� �
❅❅

��

❅❅

❅❅❅❅

�� ��
3

1 5

2

�� ��
❅❅

�� ❅❅

��
6

5 7

2 4

�� �� �
❅❅

❅❅

��

❅❅

Steffen Lauritzen — Likelihood Analysis of Gaussian Graphical Models — Swiss Winterschool 2015, Lecture 2
Slide 13/28

un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

Decomposability

Any graph can be recursively decomposed into its maximal
prime subgraphs:
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A graph is decomposable (or rather fully decomposable) if it
is complete or admits a proper decomposition into
decomposable subgraphs.

Definition is recursive. Alternatively this means that all
maximal prime subgraphs are cliques.
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Factorization of Markov distributions

Suppose P satisfies (F) w.r.t. G and (A,B , S) is a
decomposition. Then

(i) PA∪S and PB∪S satisfy (F) w.r.t. GA∪S and GB∪S
respectively;

(ii) f (x)fS(xS) = fA∪S(xA∪S)fB∪S(xB∪S).

The converse also holds in the sense that if (i) and (ii) hold,

and (A,B , S) is a decomposition of G, then P factorizes

w.r.t. G.
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Recursive decomposition of a decomposable graph into
cliques yields the formula:

f (x)
�

S∈S
fS(xS)

ν(S) =
�

C∈C
fC (xC ).

Here S is the set of minimal complete separators occurring in
the decomposition process and ν(S) the number of times
such a separator appears in this process.
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Characterizing decomposable graphs

A graph is chordal if all cycles of length ≥ 4 have chords.

The following are equivalent for any undirected graph G.
(i) G is chordal;

(ii) G is decomposable;

(iii) All maximal prime subgraphs of G are cliques;

There are also many other useful characterizations of chordal
graphs and algorithms that identify them.

Trees are chordal graphs and thus decomposable.
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If the graph G is chordal, we say that the graphical model is
decomposable.

In this case, the IPS-algorithm converges in a finite number

of steps.

We also have the factorization of densities

f (x |Σ) =
�

C∈C f (xC |ΣC )�
S∈S f (xS |ΣS)ν(S)

(4)

where ν(S) is the number of times S appear as intersection
between neighbouring cliques of a junction tree for C.
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Relations for trace and determinant

Using the factorization (4) we can for example match the
expressions for the trace and determinant of Σ

tr(KW ) =
�

C∈C
tr(KCWC )−

�

S∈S
ν(S) tr(KSWS)

and further

detΣ = {det(K )}−1 =

�
C∈C det{ΣC}�

S∈S{det(ΣS)}ν(S)

These are some of many relations that can be derived using
the decomposition property of chordal graphs.
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The same factorization clearly holds for the maximum
likelihood estimates:

f (x | Σ̂) =
�

C∈C f (xC | Σ̂C )�
S∈S f (xS | Σ̂S)ν(S)

(5)

Moreover, it follows from the general likelihood equations
that

Σ̂A = WA/n whenever A is complete.

Exploiting this, we can obtain an explicit formula for the
maximum likelihood estimate in the case of a chordal graph.
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For a |d | × |e| matrix A = {aγµ}γ∈d ,µ∈e we let [A]V denote
the matrix obtained from A by filling up with zero entries to
obtain full dimension |V | × |V |, i.e.

�
[A]V

�

γµ
=

�
aγµ if γ ∈ d , µ ∈ e

0 otherwise.

The maximum likelihood estimates exists if and only if n ≥ C

for all C ∈ C. Then the following simple formula holds for

the maximum likelihood estimate of K :

K̂ = n

�
�

C∈C

�
(wC )

−1
�V

−
�

S∈S
ν(S)

�
(wS)

−1
�V

�
.
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Mathematics marks

1:Mechanics

2:Vectors

3:Algebra

4:Analysis

5:Statistics

✏✏✏✏✏✏

������ ✏✏✏✏✏✏

������❝
❝

❝
❝
❝

This graph is chordal with cliques {1, 2, 3}, {3, 4, 5} with
separator S = {3} having ν({3}) = 1.
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Since one degree of freedom is lost by subtracting the
average, we get in this example

K̂ = 87





w11
[123] w12

[123] w13
[123] 0 0

w21
[123] w22

[123] w23
[123] 0 0

w31
[123] w32

[123] w33
[123] + w33

[345] − 1/w33 w34
[345] w35

[345]

0 0 w43
[345] w44

[345] w45
[345]

0 0 w53
[345] w54

[345] w55
[345]





where w
ij
[123] is the ijth element of the inverse of

W[123] =




w11 w12 w13

w21 w22 w23

w31 w32 w33





and so on.
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Existence of the MLE

The IPS algorithm converges to the maximum likelihood
estimator of K̂ of K provided that the likelihood function

does attain its maximum.

The question of existence is non-trivial.

A chordal cover of G is a chordal graph (no cycles without
chords) G� of which G is a subgraph.

Let n� = maxC∈C� |C |, where C� is the set of cliques in G� and
let n+ denote smallest possible value of n�.

The quantity τ(G) = n+ − 1 is known as the treewidth of G
(Halin, 1976; Robertson and Seymour, 1984).

The condition n > τ(G) is sufficient for the existence of the

MLE.
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Mechanics

Vectors

Algebra

Analysis

Statistics

✏✏✏✏✏✏

������ ✏✏✏✏✏✏

������❝
❝

❝
❝
❝

This graph has treewidth τ(G)=2 since it is itself chordal and
the largest clique has size 3.

Hence n = 3 observations is sufficient for the existence of the

MLE.
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�
�
�

�
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L1

B2

L2

This graph has also treewidth τ(G)=2 since a chordal cover
can be obtained by adding a diagonal edge.

Hence also here n = 3 observations is sufficient for the

existence of the MLE.
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Determining the treewidth τ(G) is a difficult combinatorial
problem (Robertson and Seymour, 1986), but for any n it
can be decided with complexity O(|V |) whether τ(G) < n

(Bodlaender, 1997).

If we let n− denote the maximal clique size of G, a necessary

condition is that n ≥ n−.

For n− ≤ n ≤ τ(G) it is unclear.
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Buhl (1993) shows for a p-cycle, we have n− = 2 and
τ(G) = 2. If now n = 2, the probability that the MLE exists
is strictly between 0 and 1. In fact,

P{MLE exists | K = I} = 1− 2

(p − 1)!
.

Similar results hold for the bipartite graphs K2,m (Uhler,
2012) and other special cases, but general case is unclear.

Recently there has been considerable progress (Gross and
Sullivant, 2014), for example it can be shown that n = 4
observations suffice for any planar graph, an interesting
parallel to the four-colour theorem.
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