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We recall that two random variables X and Y are
independent if

P(X € AlY =y)=P(X € A)
or, equivalently, if
P{(X € A)n(Y € B)} = P(X € A)P(Y € B).

For continuous variables the requirement is a factorization of
the joint density:

fxy (x,y) = fx(x)fy (y).

When X and Y are independent we write X 1L Y.
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Overview of lectures

Lecture 1 Markov Properties and the Multivariate
Gaussian Distribution

Lecture 2 Likelihood Analysis of Gaussian Graphical
Models

Lecture 3 Gaussian Graphical Models with Symmetry

For reference, if nothing else is mentioned, see Lauritzen
(1996), Chapters 3 and 4.
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Formal definition

Random variables X and Y are conditionally independent
given the random variable Z if

LX|Y,Z)=L(X|2).
We then write X IL Y |Z (or X LLp Y| 2Z)

Intuitively: Knowing Z renders Y irrelevant for predicting X.

Factorisation of densities:

XULY|Z <= fxyvz(x y,2)z(z) = fxz(x, 2)fvz(y, 2)
< da,b:f(x,y,z)=a(x,z)b(y, 2).
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1 7 For random variables X, Y, Z, and W it holds
(C1) If X 1L Y| Z then Y 1L X | Z;
(C2) f X1 Y|Zand U=g(Y), then X LLU|Z,

3 6 (C3) IfF XL Y|Z and U = g(Y), then

X1 Y|(Z,U);
For several variables, complex systems of conditional (£, 0);
independence can for example be described by undirected (C4) If X ILY[Z and X 1L W[(Y, Z), then
graphs. X1 (Y, W)|Zz;
Then a set of variables A is conditionally independent of a If density w.r.t. product measure f(x,y,z,w) > 0 also
set B, given the values of a set of variables C, if C separates (C5) f XL Y|(Z,W)and X I Z|(Y,W) then
A from B. X1 (Y, Z)| W.

For example in picture above

10 {4,7}[{2,3)},  {1,2)1.7|{4,5,6).
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Conditional independence can be seen as encoding abstract An independence model (Studeny, 2005) L, is a ternary
irrelevance: Knowing C, A is irrelevant for learning B, relation over subsets of a finite set V. It is graphoid if for all
(C1)—(C4) translate into: subsets A, B, C. D:

I1) If, knowin learning A is irrelevant for -

(I1) If, knowing C, learning A is irrelevant fo (S1) if AL, B|C then B L, A| C (symmetry);

learning B, then B is irrelevant for learning A; .
(I2) If, knowing C, learning A is irrelevant for (52) if ALy (BUD)|C then AL, B| C and

learning B, then A is irrelevant for learning any A Lo D| C (decomposition);
part D of B; (S3) if AL, (BUD)|C then AL, B|(CUD)

(I3) If, knowing C, learning A is irrelevant for (weak union);

learning B, it remains irrelevant having learnt (S4) if AL, B|Cand AL, D|(BUC), then
any part D of B; Al,(BUD)|C (contraction);
(I4) If, knowing C, learning A is irrelevant for (S5) if AL, B|(CUD)and AL, C|(BUD) then
learning B and, having also learnt A, D remains Al,(BUC)|D (intersection).
irrelevant for learning B, then both of A and D Semigraphoid if only (S1)—-(S4). It is compositional if
are irrelevant for learning B. (S6) if AL, B|C and AL, D|C then
The property analogous to (C5) is slightly more subtle and - AL, (BUD)|C (composition).
not generally obvious.
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Separation in undirected graphs

Let G = (V, E) be finite and simple undirected graph (no
self-loops, no multiple edges).

For subsets A, B,S of V, let AL, B|S denote that S
separates A from B in G, i.e. that all paths from A to B
intersect S.

Fact: The relation 1z on subsets of V is a compositional
graphoid.

This fact is the reason for choosing the name ‘graphoid’ for
such independence model.
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Probabilistic Independence Model

For a system V of labeled random variables X,,v € V, we
use the shorthand

AL B|C < Xall Xg|Xc,

where X4 = (X, v € A) denotes the variables with labels in
A.

The properties (C1)—(C4) imply that 1L satisfies the
semi-graphoid axioms for such a system, and the graphoid
axioms if the joint density of the variables is strictly positive.

A regular multivariate Gaussian distribution defines a
compositional graphoid independence model, as we shall see
later.
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Geometric orthogonality
Let L, M, and N be linear subspaces of a Hilbert space H and

LLIM|N < (LeN)L(MaeN),

where L& N = LN NL-.L and M are said to meet
orthogonally in N.

(O1) If L L M|Nthen M L L|N;

(O2) If L L M|N and U is a linear subspace of L,
then U L M|N;

(O3) If L L M|N and U is a linear subspace of M,
then L L M| (N + U);

(O4) fLLM|Nand L L R|(M+ N), then
L1 (M+R)|N.

Intersection does not hold in general whereas composition
(S6) does.
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G = (V, E) simple undirected graph; An independence model
1o satisfies

(P) the pairwise Markov property if
akB=alsB[V\{a B}
(L) the local Markov property if
VaeV:al, V\c(a)| bd(a);
(G) the global Markov property if

Alg,B|S=Al,B|S.
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Pairwise Markov property

3 6

Any non-adjacent pair of random variables are conditionally
independent given the remaning.

For example, 1 1,5({2,3,4,6,7} and 4 1,6|{1,2,3,5,7}.
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Local Markov property

3 6

Every variable is conditionally independent of the remaining,
given its neighbours.

For example, 5 1, {1,4}]{2,3,6,7} and
71,{1,2,3}|{4,5,6}.
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Global Markov property

3 6

To find conditional independence relations, one should look
for separating sets, such as {2,3}, {4,5,6}, or {2,5,6}

For example, it follows that 1 1,7|{2,5,6} and
21,6({3,4,5}.
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For any semigraphoid it holds that
(G) = (L) = (P)
If 1, satisfies graphoid axioms it further holds that
(P) = (G)
so that in the graphoid case
(G) = (L) < (P).

The latter holds in particular for 1L, when f(x) > 0.
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A d-dimensional random vector X = (Xi,...,Xy) has a
multivariate Gaussian distribution or normal distribution on
R if there is a vector £ € R? and a d x d matrix ¥ such
that

ATX ~ NATENTEN) forall A e RY. (1)

We then write X ~ Ny(&, X).

Taking A = e; or A = &; + ¢; where ¢; is the unit vector with
i-th coordinate 1 and the remaining equal to zero yields:

X,' ~ N(&,’,O’,’,’), COV(X,’,)(j) = O','j.

Hence £ is the mean vector and X the covariance matrix of
the distribution.
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The definition (1) makes sense if and only if A\TZ\ >0, i.e.
if X is positive semidefinite. Note that we have allowed
distributions with variance zero.

The multivariate moment generating function of X can be
calculated using the relation (1) as

T T T
md()\) _ E{e)\ X} _ e)\ E+ATXN/2
where we have used that the univariate moment generating
function for N'(u, 0?) is

my(t) = et to /2
andlet t =1, u=A"¢ and 02 = ATZ

In particular this means that a multivariate Gaussian
distribution is determined by its mean vector and covariance
matrix.
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Assume X = (X1, X2, X3) with X; independent and
Xi ~ N(&i,0?). Then

)\TX = M X1+ A X + A3X3 ~ N(u, 7‘2)
with
p=ATE= M+ Mabo + N3é3, 72 = N2 + A303 4 N33

Hence X ~ A3(&,X) with €7 = (&1, &2, &3) and

o2 0 0
y=| 0 o3 O
0 0 o3
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If ¥ is positive definite, i.e. if AT\ > 0 for X\ # 0, the
distribution has density on R

f(x| &, X) = (2m) 92 (det K)1/2e (-0 TK(=8)/2 ()

where K = X1 is the concentration matrix of the
distribution. Since a positive semidefinite matrix is positive
definite if and only if it is invertible, we then also say that
is regular.

If X1,..., Xy are independent and X; ~ N(&;,0?) their joint
density has the form (2) with £ = diag(c?) and

K =¥ ! = diag(1/0?).

Hence vectors of independent Gaussians are multivariate
Gaussian.

Steffen Lauritzen — Markov Properties and the Multivariate Gaussian Distribution — Swiss Winterschool 2015 — Lecture 1 .
Slide 20/37
L 4



UNIVERSITY OF COPENHAGEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF COPENHAGEN DEPARTMENT OF MATHEMATICAL SCIENCES

In the bivariate case it is traditional to write .
Thus the density becomes

s — O'% 01020
-\ o0 o3 ’ 1
102p 03 F(x|€,X) = .
2ra102+/(1 — p?)
with p being the correlation between X; and X. Then L1 e taa)e-6) , (o)
2 2 p +=
xe 2(1—p°) o1 9192 a5
_ 2 2 2\ _ -1
det(T) = 0202(1 — p?) = det(K)
J The contours of this density are ellipses and the
an 1 52 T109p corresponding density is bell-shaped with maximum in
—0102
(L ) o
2 2 2 _ 2 : 1,62)-
o105(1 — p?) 0102p o3
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The marginal distributions of a vector X can all be Gaussian However, the joint distribution is not Gaussian unless ¢ = 0
without the joint being multivariate Gaussian: since, for example, Y = Xj + X5 satisfies

For example, let X; ~ N(0,1), and define X; as

P(Y =0) = P(Xa = =X1) = P(|X1| < ¢) = ®(c) — ®(—¢).

X1 if | Xy >
Xo = { L iflal>e Note that for ¢ = 0, the correlation p between X; and X5 is

—Xi otherwise.

1 whereas for c = o0, p = —1.
Then, using the symmetry of the univariate Gausssian It follows that there is a value of ¢ so that X1 and X5 are
distribution, X; is also distributed as A/(0,1). uncorrelated, and still not jointly Gaussian.
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Adding two independent Gaussians yields a Gaussian:
If X ~ Ng(&1,Z1) and Xo ~ Ng(&2,X2) and Xy 1L Xo

X1+ Xo ~ Ny(&1 + &,21 + Xo).
To see this, just note that
AMX+X) = AT X + 20T X

and use the univariate addition property.
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Linear transformations preserve multivariate normality:
If Lisan r x d matrix, b € R" and X ~ Ny(&,X), then

Y =LX+b~N(LE+ b, LELT).
Again, just write
Y'Y =4 (X +b) = (LTy) X +~"b

and use the corresponding univariate result.
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Partition X into into X4 and Xg, where X4 € R and

Xg € RE with AUB = V.

Partition mean vector, concentration and covariance matrix
accordingly as

£:<§A), K:(KAA KAB)’ z:<>:AA ZAB).
B Kga Kap YBA XBB
Then, if X ~ N (&, X) it holds that

Xg ~ Ns(¢8, Z8B)-
This follows simply from the previous fact using the matrix

L= (OAB /B) .

where 04p is a matrix of zeros and /g is the B x B identity
matrix.
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If Xgp is regular, it further holds that
Xa|Xg = xg ~ Na(€ag: ZaB);
where
Eng =EatTasipp(xe—E8) and Tap=Xaa—TasTgpisa

In particular, a5 = 0 if and only if X4 and Xg are
independent.
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To see this, we simply calculate the conditional density.

f(xa|xB) o fe x(xa, xB)

o exp {—(xa — £a) " Kaa(xa — £a)/2 — (xa — €a) " Kag(xs —€B)} -

The linear term involving x4 has coefficient equal to
Kanaéa — Kag(xa — €8) = Kana {éa — KA Kas(xs — €8)}
Using the matrix identities
Kai =Zaa — ZasZpp¥BaA (3)

and
KapKag = =% 55, (4)
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Further, since

Eap =& — KiaKas(xg — ) and  Kug = Kaa,

Xa and Xpg are independent if and only if Kag = 0, giving
KAB =0 ifand on/y ifZAB = 0.

More generally, if we partition X into Xa, Xg, Xs, the
conditional concentration matrix of Xaug given X¢c = xc is
simply

SO
XAJ_LXB|XC <— Kupg =0.

It follows that a Gaussian independence model is a
compositional graphoid.
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we find
f(xa|xg) ox exp {_(XA —&a8) " Kaa(xa — §A|B)/2}

and the result follows.

From the identities (3) and (4) it follows in particular that
then the conditional expectation and concentrations also can
be calculated as

éap = éa— KaaKag(xe —€g) and  Kag = Kaa.

Note that the marginal covariance is simply expressed in
terms of ¥ whereas the conditional concentration is simply
expressed in terms of K.
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Consider A3(0, X) with covariance matrix
111
>=|1 21
11 2

The concentration matrix is
3 -1 -1

K = z—l = -1 1 0
-1 0 1
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The marginal distribution of (X3, X3) has covariance and
concentration matrix

(21 L 12 -1
223—(12), (X23) —5(_1 2)-
The conditional distribution of (X1, X2) given X3 has

concentration and covariance matrix
3 -1 _ 1/1
K12:(_1 1 >, Yio3 = (K12) 1=§<1

;)

Similarly, V(X1 | X2, X3) = 1/ki1 = 1/3, etc.
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Consider X = (X,,v € V) ~ Ny(0,X) with X regular and
K=x"1

The concentration matrix of the conditional distribution of
(Xa,Xg) given XV\{a,,@} is

o kaa kaﬁ
Ky = ( kso kg )

all BV \{a, B} < kop=0.

Hence

Thus a regular Gaussian distribution is pairwise, local, and
global Markov w.r.t. the graph G(K) given by

af B = kog=0.
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S(G) denotes the symmetric matrices A with a,3 = 0 unless
a ~ 3 and ST(G) their positive definite elements.

A Gaussian graphical model for X specifies X as multivariate
normal with K € ST(G) and otherwise unknown.

Note that the density then factorizes as

1
log f(x) = constant — 5 Z Kaax2 — Z ko gXa X3,
acV {a,B}€E

hence no interaction terms involve more than pairs..
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Mathematics marks

Examination marks of 88 students in 5 different
mathematical subjects. The empirical concentrations (on or
above diagonal) and partial correlations (below diagonal) are

Mechanics Vectors Algebra Analysis Statistics

Mechanics 5.24 —2.44 —2.74 0.01 —-0.14
Vectors 0.33 10.43 —4.71 —0.79 —0.17
Algebra 0.23 0.28 26.95 —7.05 —4.70
Analysis —0.00 0.08 0.43 9.88 —2.02
Statistics 0.02 0.02 0.36 0.25 6.45
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) Lauritzen, S. L. (1996). Graphical Models. Clarendon Press,
Graphical model for mathmarks Oxford, United Kingdom.

Studeny, M. (2005). Probabilistic Conditional Independence
Structures. Information Science and Statistics.
Springer-Verlag, London.

Analysi
Vectors nasts Whittaker, J. (1990). Graphical Models in Applied
Algebra Multivariate Statistics. John Wiley and Sons, Chichester,
United Kingdom.

Mechanics Statistics

This analysis is from Whittaker (1990).

We have An, Stats LI Mech,Vec|Alg.
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