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Basics of Monte Carlo

Example – Discrete-event / queueing model: 

• Input variates: 𝑋 = (𝑋1, 𝑋2, … ) = interarrival/service time sequences

• System logic: ℎ(⋅) = a map that “transforms” the sequences into the average waiting 
time over some time horizon

• Target output quantity: 𝐸[ℎ 𝑋 ] = expected average waiting time

In a single-server system, 

ℎ(𝑋1, … , 𝑋𝑇) = waiting time of the 𝑇-th customer can be expressed as a recursion that 
outputs 𝑊𝑇, with 𝑊1 = 0, 𝑊𝑡 = 𝑊𝑡−1 + 𝑋𝑡

+ for 𝑡 = 1,… , 𝑇 (Lindley’s recursion)



Goals of Monte Carlo Simulation

Prediction / decision-making using complex stochastic models that are 
otherwise intractable:

• Optimization: Faster service reduces waiting time but needs higher cost 
(more staffing); decision variable = staffing rule

• Sensitivity analysis: Impact on waiting time due to increase in arrival rate

• Feasibility analysis: Test if a staffing rule achieves a performance standard

These tasks lead to simulation-based optimization, stochastic gradient 
estimation, stochastic programming…



Other Examples

Operations Research:

• Financial option pricing: Estimate the expected payoff of a process governed by stochastic 
differential equation

• Inventory management: Estimate the expected revenue/cost of inventory policy under uncertain 
demand

• Emergency response system: Estimate the response times and availability of EMS ambulances

Machine learning:

• Model-based reinforcement learning 

Statistics:

• Bayesian computation, e.g., MCMC

Others: Multi-agent systems, physical and biological simulation…



Some Basics

Interested in predicting: 𝜇 = 𝐸 ℎ 𝑿

• Monte Carlo uses computer to repeatedly generate i.i.d. copies of 𝑿𝑖 (plugged into ℎ(𝑿𝑖)), 𝑖 = 1, … , 𝑛

• Report an estimate

ത𝑌 =
1

𝑛
෍

𝑖=1

𝑛

ℎ(𝑿𝑖)

Law of large numbers: Given 𝐸 ℎ(𝑿) < ∞, we have ത𝑌 → 𝜇 almost surely

• This implies ത𝑌 is a consistent point estimator for 𝜇

Central limit theorem (CLT): Given 𝜎2 = 𝑉𝑎𝑟 ℎ 𝑿 < ∞, we have 𝑛 ത𝑌 − 𝜇 /𝜎 ⇒ 𝑁(0,1). This means: 

• ത𝑌 = 𝜇 + 𝑂𝑝
1

𝑛
has a canonical square-root convergence rate

• ത𝑌 − 𝑧1−𝛼
2

𝑆

𝑛
, ത𝑌 + 𝑧1−𝛼

2

𝑆

𝑛
is a (1 − 𝛼)-level confidence interval for 𝜇, where 𝑆2 is the sample variance of 

ℎ(𝑿𝑖) and 𝑧1−𝛼
2

is the 1 −
𝛼

2
-quantile of 𝑁 0,1
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Difference with Standard Statistics..

Example – Discrete-event / queueing model: 

• Input variates: 𝑋 = (𝑋1, 𝑋2, … ) = interarrival/service time sequences

• System logic: ℎ(⋅) = a map that “transforms” the sequences into the average waiting 
time over some time horizon

• Target output quantity: 𝐸[ℎ 𝑋 ] = expected average waiting time

In a single-server system, 

ℎ(𝑋1, … , 𝑋𝑇) = waiting time of the 𝑇-th customer can be expressed as a recursion that 
outputs 𝑊𝑇, with 𝑊1 = 0, 𝑊𝑡 = 𝑊𝑡−1 + 𝑋𝑡

+ for 𝑡 = 1,… , 𝑇 (Lindley’s recursion)

Their distributions can be 
distorted

Can be replaced 
by simpler 
“metamodel”

Can output other 
additional quantities 
too from the simulation



Overview of Topics

• Variance reduction: Approaches to reduce MC error / speed up MC
• Introduce most common techniques
• Motivation
• Connection to bias reduction
• Connection to some applications in stochastic optimization and machine 

learning

• Rare-event simulation: Estimation of tail probabilities
• Large-deviations-based importance sampling
• Cross-entropy method
• Multilevel splitting



Monte Carlo Error

• 𝜇 is a target quantity to be estimated, e.g., 𝜇 = 𝐸[ℎ 𝑋 ]

• Ƹ𝜇 is a Monte Carlo estimator using, say, 𝑛 simulation runs

• Mean squared error (MSE) = 𝐸 Ƹ𝜇 − 𝜇 2 = bias2 + variance
where
bias = 𝐸 Ƹ𝜇 − 𝜇
variance = 𝑉𝑎𝑟 Ƹ𝜇

• For unbiased estimator (i.e., 𝑏𝑖𝑎𝑠 = 0), the lower the variance, the better



Variance Reduction

Suppose Ƹ𝜇 is the average of i.i.d. unbiased sample with (per-run) variance 𝜎2. Two 
views:

View 1: Half-width of confidence interval = 𝑧
1−

𝛼

2

𝜎

𝑛

View 2: High-probability estimation discrepancy

𝑃 Ƹ𝜇 − 𝜇 > 𝜖 ≤
𝜎2

𝑛𝜖2

To reduce half-width or estimation discrepancy, we reduce the estimation variance 
𝜎2/𝑛 by either:

• Increase sample size
• Reduce 𝜎2

Our focus next. When is reducing 𝜎2 worthwhile?



Variance Reduction

Methods to reduce 𝜎2:

• Importance sampling

• Control variates

• Multilevel MC

• Conditional MC

• Common random numbers

• Stratification

• Quasi MC…
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Importance Sampling

Goal: Estimate 𝐸 ℎ 𝑋 under 𝑋 ∼ 𝑃

Naïve MC: Generate 𝑋𝑖 from 𝑃 and output 
1

𝑛
σ𝑖=1
𝑛 ℎ(𝑋𝑖)

IS idea: 

• Use a different distribution ෨𝑃 to generate 𝑋, which gives a biased estimate

• Multiply by a likelihood ratio to de-bias the estimate



Importance Sampling

Mathematically,

• Use ෨𝑃 to generate 𝑋, and output ℎ 𝑋 𝐿(𝑋) where 𝐿 is known as the 
likelihood ratio

𝐿 𝑋 =
𝑑𝑃

𝑑 ෨𝑃
(𝑋) = Radon-Nikodym derivative between 𝑃 and ෨𝑃

• With 𝑛 simulation runs, we obtain
1

𝑛
σ𝑖=1
𝑛 ℎ 𝑋𝑖 𝐿(𝑋𝑖)

where 𝑋𝑖 is generated from the IS distribution ෨𝑃



Importance Sampling

Requirement: ℎ 𝑥 𝑑𝑃(𝑥) is absolutely continuous w.r.t. 𝑑 ෨𝑃 𝑥

i.e., if 𝑑 ෨𝑃 𝑥 = 0, then ℎ 𝑥 𝑑𝑃 𝑥 = 0, or

if ℎ 𝑥 𝑑𝑃 𝑥 ≠ 0, then 𝑑 ෨𝑃 𝑥 ≠ 0

Example: To estimate 𝑃(𝑋 > 10) for 𝑋 ∼ 𝑁(0, 1), can we use ෨𝑃 =

• 𝑁 20, 20

• 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 −20, 20

• 𝐸𝑥𝑝(1)



Importance Sampling

Claim: The IS ℎ 𝑋 𝐿 𝑋 , where 𝑋 ∼ ෨𝑃, is unbiased



Importance Sampling

Claim: The IS ℎ 𝑋 𝐿 𝑋 , where 𝑋 ∼ ෨𝑃, is unbiased

Reasoning:

𝐸 ℎ 𝑋 = ∫ ℎ 𝑥 𝑑𝑃 𝑥 = ∫ ℎ 𝑥
𝑑𝑃 𝑥

𝑑 ෨𝑃 𝑥
𝑑 ෨𝑃 𝑥 = ෨𝐸 ℎ 𝑋 𝐿 𝑋

Only makes sense if ℎ 𝑥
𝑑𝑃 𝑥

𝑑 ෨𝑃 𝑥
is well-defined, i.e., absolute continuity 

condition holds

A “change of measure” idea



Optimal Importance Sampling

IS is used in the hope that the variance is reduced compared to crude MC. How do we know 
variance can be reduced?

• Consider an IS 𝑃∗ defined as
𝑑𝑃∗

𝑑𝑃
(𝑋) =

ℎ(𝑋)

𝐸 ℎ 𝑋
Then using 𝑃∗ gives the least variance among all legitimate IS

Furthermore, 

• If ℎ ≥ 0, then the variance of an IS sample from 𝑃∗ has zero variance

• If ℎ 𝑥 = 𝐼(𝑥 ∈ 𝐴), i.e., we estimate the probability of event 𝐴, then the best IS distribution
𝑑𝑃∗

𝑑𝑃
𝑋 =

ℎ 𝑋

𝐸 ℎ 𝑋
=
𝐼 𝑋 ∈ 𝐴

𝑃 𝐴
is the conditional distribution given 𝐴 (very intuitive!)



Optimal Importance Sampling

• While 𝑃∗ is not implementable (in a meaningful way), the above guides us 
that a good IS ෨𝑃 approximates the conditional distribution given the 
considered event

• IS is a powerful technique in that it can enhance estimation efficiency 
substantially (exponentially) if carefully designed

• IS is a “double-edged sword”: It can also hurt efficiency substantially (very 
high variance) if poorly designed, despite its unbiasedness



Control Variate

In estimating 𝐸[ℎ 𝑋 ], suppose we can also generate an “auxiliary” quantity 
𝑌 whenever we simulate ℎ(𝑋)

Suppose we know the information 𝐸 𝑌 = 𝜇

We can use 𝑌 as a control variate (CV). This means we output
ℎ 𝑋 + 𝛽(𝑌 − 𝜇)

from our simulation run

Claim: The CV estimator is unbiased



Control Variate

• More generally, given we can simulate ℎ 𝑋 , 𝑌 together, and know 
the information 𝐸 𝑌 = 𝜇 for 𝑌 ∈ 𝑅𝑑 , the CV output is

ℎ 𝑋 + 𝛽′ 𝑌 − 𝜇

• If we have 𝑛 simulation runs, we output

1

𝑛
෍

𝑖=1

𝑛

ℎ 𝑋𝑖 + 𝛽′ 𝑌𝑖 − 𝜇

where (ℎ 𝑋𝑖 , 𝑌𝑖) is the 𝑖-th simulation outcome



Control Variate

How can CV reduce variance?

• We choose 𝛽 such that the variance is reduced

𝑉𝑎𝑟 ℎ 𝑋 + 𝛽′ 𝑌 − 𝜇 = 𝑉𝑎𝑟 ℎ 𝑋 + 2𝛽′𝐶𝑜𝑣 ℎ 𝑋 , 𝑌 + 𝛽′𝑉𝑎𝑟 𝑌 𝛽

Minimizing over 𝛽, we get 𝛽 = −𝑉𝑎𝑟 𝑌 −1𝐶𝑜𝑣(ℎ 𝑋 , 𝑌)

• The variance is
𝑉𝑎𝑟 ℎ 𝑋 − 𝐶𝑜𝑣 ℎ 𝑋 , 𝑌 ′𝑉𝑎𝑟 𝑌 −1𝐶𝑜𝑣 ℎ 𝑋 , 𝑌

• To achieve variance reduction, ℎ(𝑋) and 𝑌 needs to have non-zero correlation, and the higher in 
magnitude the better, i.e., 𝑌 provides some information for ℎ(𝑋) (very intuitive!)



Control Variate

• In practice, the optimal 𝛽∗ = −𝑉𝑎𝑟 𝑌 −1𝐶𝑜𝑣(ℎ 𝑋 , 𝑌) is unknown and 
estimated via its sample counterpart 

መ𝛽 = − ෢𝑉𝑎𝑟 𝑌 −1 ෢𝐶𝑜𝑣(ℎ 𝑋 , 𝑌)

• Final output is
1

𝑛
෍

𝑖=1

𝑛

ℎ 𝑋𝑖 + መ𝛽′ 𝑌𝑖 − 𝜇

This introduces a small bias (negligible relative to the standard deviation. 
How to show?)



Control Variate

Control variate estimator is equivalent to estimating the intercept of a linear 
regression that regresses ℎ(𝑋) against 𝑌 − 𝜇

• ෢𝑉𝑎𝑟 𝑌 −1 ෢𝐶𝑜𝑣(ℎ 𝑋 , 𝑌) is the vector of estimated coefficients for 𝑌 − 𝜇

• The final control variate output ℎ 𝑋 − ෢𝑉𝑎𝑟 𝑌 −1 ෢𝐶𝑜𝑣(ℎ 𝑋 , 𝑌) ത𝑌 − 𝜇 is 
the estimated intercept 

• Estimating the intercept of the regression has a lower variance than 
estimating the mean of the response variable



When Do We Need Variance Reduction?

• Not always needed, given nowadays’ computational power to 
generate many simulation runs easily

• Useful when reducing 𝜎2 is much more effective than increasing 𝑛. 
Examples:
• Rare-event simulation: one may need an “exponential” 𝑛 to achieve a 

meaningful estimation error
• When each output sample has a huge variance: gradient estimators that 

suffer from the “curse of horizon”
• When many estimators are needed: E.g., running gradient descent to solve an 

optimization
• Super-canonical convergence: distort the fundamental convergence speed in 
𝑛 from square-root scaling in CLT to faster



Rare-Event Simulation

• In rare-event probability estimation, i.e., the target quantity 𝑝 = 
P(rare-event) is very small, we want a point estimate Ƹ𝑝 to be close to 
𝑝 relative to the magnitude of 𝑝

• By Markov inequality,

𝑃 Ƹ𝑝 − 𝑝 > 𝜖𝑝 ≤
𝜎2

𝑛𝜖2𝑝2

• The needed 𝑛 to achieve a relative discrepancy of 𝜖 with confidence 

1 − 𝛼 is ≥
𝜎2

𝛼𝜖2𝑝2



Rare-Event Simulation

Consider simulating 𝑃(𝑋 > 10) where 𝑋 ∼ 𝑁(0,1)

• Crude Monte Carlo: run 𝑛 simulation runs and obtain
1

𝑛
෍

𝑖=1

𝑛

𝐼(𝑋𝑖 > 10)

• Suppose we want to estimate 𝑝 within 5% of the truth, with confidence 95%, then we 
need a sample size to be

𝜎2

5% × 5%2 × 𝑝2

where 𝜎2 = 𝑝(1 − 𝑝)

• This number turns out to be around 1026

• If we simulate 1 million normal variables in a millisecond, we need 3 million years to 
finish



Rare-Event Simulation

• Required sample size 𝑛 to achieve a relative discrepancy of 𝜖 with confidence 1 − 𝛼 is 
𝜎2

𝛼𝜖2𝑝2

• Define relative error = 
𝑉𝑎𝑟 𝑍

𝐸 𝑍
=

𝜎

𝑝

• Crude MC has RE = 
𝑝 1−𝑝

𝑝
≈

1

𝑝

• When 𝑝 is tiny, to control relative error (and needed 𝑛), we need variance reduction to reduce 𝜎
to 𝑂(𝑝) (as opposed to 𝑂( 𝑝) in naïve MC)

• This requirement motivates rare-event simulation techniques, including IS, multi-level splitting / 
subset simulation (Au & Beck ‘01, Dean & Dupuis ’09, Villen-Altamirano ’94), cross-entropy 
methods (De Boer ’05, Rubinstein & Kroese ’13)…



Exponential Tilting

Can we efficiently estimate 𝑃 𝑋 > 10 for 𝑋 ∼ 𝑁(0,1) using IS?

Exponential tilting is a convenient framework to design IS: Assume 𝑃 has light tail, i.e., the 
logarithmic moment generating function 𝜓 𝜃 = log 𝐸 𝑒𝜃𝑋 exists for 𝜃 in a neighborhood 
of 0. 

Consider an exponential family 𝑑 ෨𝑃𝜃 𝑥 = 𝑒𝜃𝑥−𝜓 𝜃 𝑑𝑃(𝑥)

Example:

• 𝑃 = 𝑁(𝜇, Σ) → ෪𝑃𝜃 = 𝑁( ෤𝜇, Σ)

• 𝑃 = Exp(𝜆) → ෪𝑃𝜃 = 𝐸𝑥𝑝( ሚ𝜆)

Find 𝜃 that gives a low variance via tail analysis. Can be generalized to other problems 
(more to come later)



Exponential Tilting

Known fact: 𝑃 𝑋 > 𝛾 ≈
1

2𝜋𝛾
𝑒−

𝛾2

2 as 𝛾 → ∞

Crude MC has 𝑅𝐸2 = 
1

𝑝
∼ 𝛾𝑒𝛾

2/2, (more than) exponential in 𝛾



Exponential Tilting

Consider an IS distribution ෨𝑃 = 𝑁 𝛾, 1

Likelihood ratio: 𝐿 =
𝑑𝑃

𝑑 ෨𝑃
=

𝑒
−
𝑥2

2

𝑒
−
𝑥−𝛾 2

2

= 𝑒−𝑥𝛾+
𝛾2

2

Relative error:

𝑅𝐸2 =
෪𝑉𝑎𝑟 𝐼 𝑋 > 𝛾 𝐿

𝑝2
=

෨𝐸 𝐼 𝑋 > 𝛾 2𝐿2 − 𝑝2

𝑝2
=

෨𝐸 𝐼 𝑋 > 𝛾 2𝐿2

𝑝2
− 1

where second moment of IS: 
෨𝐸 𝐼 𝑋 > 𝛾 2𝐿2 = ෨𝐸 𝐿2; 𝑋 > 𝛾 = ෨𝐸 𝑒−2𝑥𝛾+𝛾

2
; 𝑋 > 𝛾 = 𝑒−𝛾

2 ෨𝐸 𝑒−2𝛾 𝑥−𝛾 ; 𝑋 > 𝛾 ≤ 𝑒−𝛾
2

So

𝑅𝐸2 ≤ 𝑂(𝛾2) − 1, polynomial in 𝛾 ⇒ substantial improvement over CMC



Derivative Estimation

Goal: Estimate the derivative of 𝑓(𝜃), where 𝑓(𝜃) can only be observed with random noise

• 𝑓 𝜃 = 𝐸 ℎ 𝜃; 𝑋 , and we can generate unbiased estimate ℎ(𝜃; 𝑋)

• We denote መ𝑓(𝜃) an unbiased copy for 𝑓(𝜃)

Motivation:

• Optimization: Stochastic gradient descent / stochastic approximation

• Sensitivity analysis: What if a (distributional or system) parameter perturbs?

• Uncertainty quantification: Constructing confidence intervals using the delta method

Variance reduction improves the efficiency of some challenging stochastic derivative estimators



Derivative Estimation: Example

Policy gradient in reinforcement learning

A Markov decision process with:

• State: 𝑠

• Action: 𝑎

• Transition kernel 𝑃(𝑠′|𝑠, 𝑎) (simulatable from a model)

• Reward function: 𝑟(⋅)

• Policy: Given state 𝑠, use action 𝑎 with probability 𝑝𝜃(𝑎|𝑠) ← can be a neural 
network, Gaussian mixture etc.

To maximize the cumulative reward 𝑓 𝜃 = 𝐸𝜃 σ𝑡=1
𝑇 𝑟(𝑆𝑡 , 𝐴𝑡) , we run gradient 

descent which requires estimating 𝑓′(𝜃)



Zeroth vs First-Order Methods

• Efficiency of derivative estimation depends on our level of knowledge on 𝑓(𝜃):

• Zeroth-order: Only noisy function evaluation is available
• Finite-difference methods

• First-order: Unbiased estimator for derivative is available
• Infinitesimal perturbation analysis
• Likelihood ratio / score function method
• Measure-valued differentiation
• Other variants, e.g., smoothed IPA…

• The bias in zeroth-order method pays a price on efficiency. If applicable, first-order 
methods are preferred

• If the gradient of a vector function is needed, the basic approach is to separately 
estimate the derivative for each direction (but things are more subtle when applying it in 
optimization)
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Finite Difference

Suppose መ𝑓(𝜃) is a “black-box”, i.e., we have no access to what’s inside 𝑓

Finite-difference is based on the first principle of differentiation:
መ𝑓 𝜃 + 𝛿 − መ𝑓 𝜃 − 𝛿

2𝛿
where መ𝑓(𝜃 + 𝛿) and መ𝑓(𝜃 − 𝛿) refer to two independent copies

When we have 𝑛 simulation budget, we output 

෍

𝑖=1

𝑛
መ𝑓𝑖 𝜃 + 𝛿 − መ𝑓𝑖 𝜃 − 𝛿

2𝛿

The above is called central finite difference. Can also define forward and backward finite 
difference (but generally less efficient)



Finite Difference

Bias:

𝐸
መ𝑓 𝜃 + 𝛿 − መ𝑓 𝜃 − 𝛿

2𝛿
− 𝑓′ 𝜃 =

𝑓 𝜃 + 𝛿 − 𝑓 𝜃 − 𝛿

2𝛿
− 𝑓′(𝜃) =

1

3!
𝑓′′′ 𝜃 𝛿2 +⋯

Variance on 𝑛 pairs:
1

𝑛
𝑉𝑎𝑟

መ𝑓 𝜃 + 𝛿 − መ𝑓 𝜃 − 𝛿

2𝛿
=
𝜎2 𝜃 + 𝛿 + 𝜎2 𝜃 − 𝛿

4𝑛𝛿2

MSE = 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟 = 𝐶1𝛿
4 +

𝐶2

𝑛𝛿2

Optimal choice of perturbation size 𝛿 is tuned to balance squared bias and variance, to order 1/𝑛
1

6, 
giving root MSE of order 1/𝑛

1

3 ⇒ worse than canonical rate of 1/ 𝑛

For forward / backward FD, the root MSE is even worse, of order 1/𝑛
1

4



Finite Difference with Common Random 
Numbers

• When estimating the mean difference of two systems, 𝑋1 − 𝑋2, we use the 
same stream of random numbers in the computer to drive the simulation 
of 𝑋1 and 𝑋2

• 𝑉𝑎𝑟 𝑋1 − 𝑋2 = 𝑉𝑎𝑟 𝑋1 + 𝑉𝑎𝑟 𝑋2 − 2𝐶𝑜𝑣(𝑋1, 𝑋2), and the common 
random numbers usually make 𝐶𝑜𝑣 𝑋1, 𝑋2 > 0, so that the output has 
less variance than crude MC

• Often used in the comparisons among multiple simulation-based 
alternatives, i.e., ranking and selection



Finite Difference with Common Random 
Numbers
When applying to finite difference, we simulate መ𝑓 𝜃 + 𝛿 and መ𝑓 𝜃 − 𝛿 using the same stream of random 
numbers

For typical discrete-event systems, 𝑉𝑎𝑟 መ𝑓 𝜃 + 𝛿 − መ𝑓 𝜃 − 𝛿 = 𝑂(𝛿)

Bias:

𝐸
መ𝑓 𝜃 + 𝛿 − መ𝑓 𝜃 − 𝛿

2𝛿
− 𝑓′ 𝜃 =

𝑓 𝜃 + 𝛿 − 𝑓 𝜃 − 𝛿

2𝛿
− 𝑓′(𝜃) =

1

3!
𝑓′′′ 𝜃 𝛿2 +⋯

Variance on 𝑛 pairs:
1

𝑛
𝑉𝑎𝑟

መ𝑓 𝜃 + 𝛿 − መ𝑓 𝜃 − 𝛿

2𝛿
=
𝑂(𝛿)

4𝑛𝛿2
= 𝑂

1

4𝑛𝛿

So

MSE = 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟 = 𝐶1𝛿
4 +

𝐶2

𝑛𝛿

Optimal choice of perturbation size 𝛿 is of order 1/𝑛
1

5, giving root MSE of order 1/𝑛
2

5 ⇒ an improvement



Infinitesimal Perturbation Analysis / Pathwise
differentiation
• Exchange the derivative with expectation operators

𝑑

𝑑𝜃
𝐸 ℎ 𝜃; 𝑋 = 𝐸

𝑑

𝑑𝜃
ℎ 𝜃; 𝑋

• If we can simulate 
𝑑

𝑑𝜃
ℎ 𝜃; 𝑋 directly, then we can output

1

𝑛
෍

𝑖=1

𝑛
𝑑

𝑑𝜃
ℎ(𝜃; 𝑋𝑖)

as an unbiased estimator for 𝑓′ 𝜃 =
𝑑

𝑑𝜃
𝐸 ℎ 𝜃; 𝑋



Infinitesimal Perturbation Analysis / Pathwise
differentiation
If ℎ 𝜃; 𝑋 is almost surely differentiable at 𝜃 and Lipschitz continuous

ℎ 𝜃1; 𝑋 − ℎ 𝜃2; 𝑋 ≤ 𝑀|𝜃1 − 𝜃2|

for 𝜃1, 𝜃2 in a neighborhood of 𝜃, where 𝐸 𝑀 < ∞, then IPA is valid

Example: ℎ 𝜃;𝑿 = max{𝑋1, 𝜃𝑋2}

Example: ℎ 𝜃;𝑿 = 𝐼 𝜃𝑋2 > 𝑋1



Likelihood Ratio / Score Function Method

Suppose the parameter 𝜃 is in the probability distribution 𝑃𝜃 that generates 𝑋

We write 𝑓 𝜃 = 𝐸𝜃 ℎ 𝑋

Then
𝑑

𝑑𝜃
𝐸𝜃 ℎ 𝑋 = 𝐸𝜃 ℎ 𝑋 𝑆𝜃 𝑋

where 𝑆𝜃 𝑋 is the score function

𝑆𝜃 𝑥 =
𝑑

𝑑𝜃
log 𝑓𝜃(𝑥) =

𝑑
𝑑𝜃

𝑓𝜃 𝑥

𝑓𝜃 𝑥



Likelihood Ratio / Score Function Method

Reasoning:
𝑑

𝑑𝜃
𝐸𝜃 ℎ 𝑋 =

𝑑

𝑑𝜃
∫ ℎ 𝑥 𝑓𝜃 𝑥 𝑑𝑥 = ∫ ℎ 𝑥

𝑑

𝑑𝜃
𝑓𝜃 𝑥 𝑑𝑥

= ∫ ℎ 𝑥

𝑑
𝑑𝜃

𝑓𝜃 𝑥

𝑓𝜃 𝑥
𝑓𝜃 𝑥 𝑑𝑥 = ∫ ℎ 𝑥 𝑆𝜃 𝑥 𝑓𝜃(𝑥)𝑑𝑥 = 𝐸𝜃 ℎ 𝑋 𝑆𝜃 𝑋

Alternately via IS:
𝑑

𝑑𝜃
𝐸𝜃 ℎ 𝑋 =

𝑑

𝑑 ෨𝜃
∫ ℎ 𝑥 𝑓෩𝜃 𝑥 𝑑𝑥 ቚ

෩𝜃=𝜃
=

𝑑

𝑑 ෨𝜃
∫ ℎ 𝑥

𝑓෩𝜃 𝑥

𝑓𝜃 𝑥
𝑓𝜃(𝑥)𝑑𝑥 ቚ෩𝜃=𝜃

= ∫ ℎ 𝑥

𝑑

𝑑 ෨𝜃
𝑓෩𝜃 𝑥 |෩𝜃=𝜃

𝑓𝜃 𝑥
𝑓𝜃(𝑥)𝑑𝑥 = 𝐸𝜃 ℎ 𝑋 𝑆𝜃 𝑋



Likelihood Ratio / Score Function Method

Suppose 𝑓𝜃 𝑥 is continuously differentiable in 𝜃 almost everywhere in 

𝑥, ℎ 𝑥 ∈ 𝐿𝑞, 
𝑑

𝑑෩𝜃
𝑓෩𝜃 𝑥 ≤ 𝑀(𝑥) where 𝑀 𝑥 ∈ 𝐿𝑝, for ෨𝜃 in a 

neighborhood of 𝜃 and almost everywhere in 𝑥, with 
1

𝑝
+

1

𝑞
= 1. Then 

LR/SF is valid



Comparisons

IPA: 

• More structural assumptions on ℎ

• Less variance

LR/SF:

• Minimal structural assumptions on ℎ, but some conditions on 𝑓𝜃
• High variance especially if the time horizon is long (“curse of horizon”)

LR/SF is more flexible but has (potentially much) higher variance. IPA is 
usually viewed as superior if it can be implemented



Curse of Horizon

The score function of multiple (independent or Markovian) variables is the sum of individual score 
functions

⇒ LR/SF method involves multiplying with a long summation if the time horizon is long ⇒ high 
variance

Example: 

𝑓 𝜃 = 𝐸𝜃 σ𝑡=1
𝑇 𝑐(𝑆𝑡 , 𝐴𝑡) , with transition probability 𝑃(𝑠′|𝑠, 𝑎) and policy parametrized by 

𝑃𝜃(𝑎|𝑠)

An LR/SF estimate of 𝑓′(𝜃) (using one simulated copy) is σ𝑡=1
𝑇 𝑐(𝑆𝑡 , 𝐴𝑡)σ𝑡=1

𝑇 𝑆𝜃(𝐴𝑡|𝑆𝑡), where 
𝑆𝜃 𝑎 𝑠 =

𝑑

𝑑𝜃
log 𝑃𝜃(𝑎|𝑠)

Reminiscent of a “blow-up” issue in IS when applied poorly (more later)



Reparametrization Trick

Consider taking the gradient w.r.t. 𝜃
𝑑

𝑑𝜃
𝐸𝜃 ℎ(𝑋)

where LR/SF could have a large variance. Can we possibly bypass this?

Reparametrization trick (Rezende & Mohamed ‘15), equivalent to the “push-out” 
method (Rubinstein ‘92): 

Suppose we can generate 𝑋 ∼ 𝑃𝜃 by a “flow” 𝑓𝜃 that maps a simple variable, e.g., a 
normal variable 𝜖, to the complicated variable 𝑋

Then 𝐸𝜃 ℎ(𝑋) = 𝐸𝜖 ℎ 𝑓𝜃 𝜖

and we can use IPA as long as ℎ ∘ 𝑓𝜃 satisfies the needed smoothness conditions



Reparametrization Trick

Consider taking the gradient w.r.t. 𝜃
𝑑

𝑑𝜃
𝐸𝜃 ℎ(𝑋)

where LR/SF could have a large variance. Can we possibly bypass this?

Reparametrization trick (Rezende & Mohamed ‘15), equivalent to the “push-out” 
method (Rubinstein ‘92): 

Suppose we can generate 𝑋 ∼ 𝑃𝜃 by a “flow” 𝑓𝜃 that maps a simple variable, e.g., a 
normal variable 𝜖, to the complicated variable 𝑋

Then 𝐸𝜃 ℎ(𝑋) = 𝐸𝜖 ℎ 𝑓𝜃 𝜖

and we can use IPA as long as ℎ ∘ 𝑓𝜃 satisfies the needed smoothness conditions

lower variance may not be differentiable, esp. in black-box setups



A Control Variate Remedy

Train a differentiable approximating model ෠ℎ for ℎ. 

The estimator (Grathwohl et al. ‘18)

ℎ 𝑋 𝑆𝜃 𝑋 − ෠ℎ 𝑋 𝑆𝜃 𝑋 +
𝑑

𝑑𝜃
෠ℎ 𝑓𝜃 𝜖

is unbiased for 
𝑑

𝑑𝜃
𝐸𝜃 ℎ(𝑋)

and has potentially much lower variance than ℎ 𝑋 𝑆𝜃 𝑋 when ෠ℎ is a good approximation

෠ℎ 𝑋 𝑆𝜃 𝑋 acts as a CV for ℎ 𝑋 𝑆𝜃 𝑋 with an accurate mean estimate 
𝑑

𝑑𝜃
෠ℎ 𝑓𝜃 𝜖



Stochastic Variance Reduced Gradient 
Descent
To solve an empirical minimization problem min

𝜃
መ𝑓 𝜃 , where መ𝑓(⋅) =

1

𝑛
σ𝑖=1
𝑛 መ𝑓𝑖(⋅), 𝑖 = 1,… , 𝑛, and መ𝑓𝑖(⋅) is a 

noisily observed function via one sample that is differentiable in 𝜃 (e.g., loss minimization for a statistical 
model)

Gradient descent: 𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡𝛻 መ𝑓 𝜃𝑡 where 𝛻 መ𝑓 ⋅ =
1

𝑛
σ𝑖=1
𝑛 𝛻෡𝑓𝑖(⋅),  𝜂𝑡 = step size

• Each gradient in the iteration is computed directly from differentiating 
1

𝑛
σ𝑖=1
𝑛 ෡𝑓𝑖(⋅)

Stochastic gradient descent: 𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡𝛻෡𝑓𝑖𝑡 𝜃𝑡 where 𝑖𝑡 = randomly selected index

• Each gradient in the iteration is computed using the gradient of one sampled ෡𝑓𝑖(⋅)



Stochastic Variance Reduced Gradient 
Descent
SVRG (Johnson & Tong ’13): 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡 𝛻 መ𝑓𝑖𝑡 𝜃𝑡 − 𝛻 መ𝑓𝑖𝑡
෨𝜃 + 𝛻 መ𝑓 ෨𝜃

where ෨𝜃 = sufficiently optimal solution

𝛻 መ𝑓𝑖𝑡(
෨𝜃) acts as a CV for 𝛻 መ𝑓𝑖𝑡 𝜃𝑡 to decrease variance in gradient estimation

⇒ allow use of constant step size without sacrificing high variability



Super-Canonical Convergence

• Canonical MC rate (measured by root MSE) = 𝑂 1/ 𝑛

• Can we achieve faster rate 𝑜(1/ 𝑛) by variance reduction?

“Super”-effective control functionals (Oates et al., 2017): To estimate 𝐸 ℎ 𝑋 , find 
𝑠(𝑋) such that the CV estimator

ℎ 𝑋 − 𝑠 𝑋 + 𝐸 𝑠 𝑋

has extremely low variance, by approximating ℎ via a dense class of functional 
approximation 𝑠 whose mean 𝐸[𝑠 𝑋 ] is known



Super-Canonical Convergence

How can such 𝑠 be constructed?

Synthesis of two ideas:

Reproducing Kernel Hilbert Space (RKHS): An RKHS 𝐻 is a Hilbert space of real-valued functions ℎ: Ω → 𝑅 with an 
inner product <·,·> and there exists a positive definite symmetric function 𝑘: Ω × Ω → 𝑅 such that

• 𝑘(·, 𝑥) ∈ 𝐻, ∀𝑥 ∈ Ω;

• ℎ 𝑥 = < ℎ(·), 𝑘(·, 𝑥) >, ∀𝑥 ∈ Ω, ∀ℎ ∈ 𝐻.

𝑘: the reproducing kernel of this Hilbert space. 

Stein’s identity: Assume the distribution 𝑃 of 𝑋 is analytically known, then for any 𝑔(𝑥) in the Stein class of 𝑃,
𝐸𝑃[𝒜𝑃𝑔(𝑋)] = 0

where 𝒜𝑃𝑔 𝑥 = 𝛻 log 𝑝 𝑥 𝑔 𝑥 + 𝛻𝑔 𝑥 is called Stein’s operator.

• The class 𝒜𝑃𝑘(𝑥,⋅) forms another RKHS 𝐻0 where 𝐸𝑃 𝒜𝑃𝑘 𝑥, 𝑋 = 0 ⇒ A rich class of CV



Super-Canonical Convergence

• Using simulation data 𝑥𝑖 , ℎ 𝑥𝑖 , run kernel ridge regression on the space 𝐻+ ≔ 𝐶 + 𝐻0:

𝑠𝑚 𝑥 ≔ 𝑎𝑟𝑔𝑚𝑖𝑛𝑔∈𝐻+
1

𝑚
෍

𝑖=1

𝑚

ℎ 𝑥𝑖 − 𝑔 𝑥𝑖
2
+ 𝜆 𝑔 𝐻+

2

• Apply CV 𝑠𝑚(⋅) in a “test set” to get the estimator

෠𝜃𝐶𝐹 =
1

𝑛 − 𝑚
෍

𝑗=𝑚+1

𝑛

ℎ(𝑥𝑗) − 𝑠𝑚 𝑥𝑗 + 𝐸𝑃 𝑠𝑚 𝑥𝑗

• Super-canonical convergence: Suitably choosing regularization parameter 𝜆 and allocating “training” 
and “testing” set size, 

root MSE = 𝑂(𝑛−
3

4)

• Can use “Stein-kernelized” IS as well (Liu & Lee ‘17)

• Can use other functional approximations as well (Portier & Segers ’19, Henderson & Glynn ’02, Maire
‘03)



Bias Reduction

Rather than variance reduction, we sometimes face the need of bias reduction. 
Examples:

• When generating 𝑋 from the original distribution is prohibited. E.g.,

• Off-policy evaluation: An alternate policy employed in experiments to inform the 
performance of a target policy

• Transfer learning / covariate shift: The test data set is generated from a different distribution 
from the training set, and only the training set has “label”

• Bayesian statistics: Intractable posterior distribution (and known only up to normalizing 
constant)

• When the target quantity is not a simple “expectation”. E.g., zeroth-order 
derivative estimation, and more



IS for Bias Reduction

IS is also a bias reduction tool:

• Suppose can only generate 𝑋 ∼ 𝑄, different from 𝑃 in the target 𝐸𝑃 ℎ 𝑋

• We can use σ𝑖 ℎ 𝑋𝑖
𝑑𝑃

𝑑𝑄
𝑋𝑖 as an unbiased estimator

• More generally, even if we only know 𝑃 up to a normalizing constant 
(common for Bayesian posterior), call this 𝑓, we can use the self-
normalized estimator

σ𝑖 ℎ 𝑋𝑖
𝑓
𝑞
𝑋𝑖

σ𝑖
𝑓
𝑞
𝑋𝑖

as a nearly unbiased estimator



Simultaneous Bias and Variance Reduction

• If 𝑄 is very different from 𝑃 in the target 𝐸𝑃 ℎ 𝑋 , the likelihood ratio 
𝑑𝑃

𝑑𝑄
could be huge (i.e., 

sample from 𝑃 concentrates in region untouched by 𝑄)

• The IS estimator 
1

𝑛
σ𝑖 ℎ 𝑋𝑖

𝑑𝑃

𝑑𝑄
𝑋𝑖 , although unbiased, has high variance (recall the “double-

edged sword” comment earlier – though not exactly meant there)

• If we can train a model ෠ℎ to approximate ℎ such that 𝐸𝑃[෠ℎ 𝑋 ] is (approximately) known, we can 
combine IS and CV to obtain the doubly robust estimator: 

1

𝑛
෍

𝑖

ℎ 𝑋𝑖 − ෠ℎ 𝑋𝑖
𝑑𝑃

𝑑𝑄
𝑋𝑖 +𝐸𝑃[෠ℎ 𝑋 ]

For some of the mentioned problems, it is possible to get such an ෠ℎ



Bias Reduction

When the target quantity is not a simple “expectation”. E.g., 

• Zeroth-order derivative estimation: Bias caused by using finite difference in 
approximating derivative (we’ve seen)

• Steady-state estimation of a stochastic process: If we stop simulating the process 
at a finite time, there would be an “initial transient” bias

• Function-of-expectation estimation: To estimate 𝑓 𝐸 ℎ 𝑋 , if we use 
𝑓 ෠𝐸 ℎ 𝑋 , there would be bias. This includes settings in stochastic optimization 
and nested simulation etc.

• Discretizing continuous-time processes: Simulating a continuous-time process 𝑋⋅
at only the time-discretized values 𝑋𝑡1 , … , 𝑋𝑡𝑚 would cause bias



Multilevel Monte Carlo

Biased simulation estimator Ƹ𝜇𝑘 to estimate 𝜇 typically has a tuning parameter 𝑘
that controls the tradeoffs among bias, variance or computation load, e.g.,

• Steady-state estimation: process run-length

• Function-of-expectation estimation: sample size for estimating the expectation

• Continuous-time processes: discretization scale

W.l.o.g., when 𝑘 = ∞, Ƹ𝜇∞ is unbiased



Multilevel Monte Carlo

MLMC is an approach to allocate different simulation run budget to different levels of 𝑘 to maximize 
efficiency

Consider the telescoping sum:

𝐸[ ො𝜇𝐿] = 𝐸 ො𝜇0 +෍

𝑘=1

𝐿

𝐸 ො𝜇𝑘 − 𝐸 ො𝜇𝑘−1

so that

1

𝑁0
෍

𝑖=1

𝑁0

ො𝜇0
𝑖
+෍

𝑘=1

𝐿
1

𝑁𝑘
෍

𝑖=1

𝑁𝑘

( ො𝜇𝑘
𝑖
− ො𝜇𝑘−1

𝑖
)

has the same bias as ො𝜇𝐿. 

• The budget 𝑁𝑘 , 𝑘 = 1,… , 𝐿 is carefully allocated to simulate ො𝜇0
𝑖

and ො𝜇𝑘
𝑖
− ො𝜇𝑘−1

𝑖
, 𝑘 = 1,… , 𝐿 (to 

achieve variance reduction)

• Efficiency gain is only possible if ො𝜇𝑘−1
𝑖

and ො𝜇𝑘
𝑖

can be simulated in a coupled manner



Multilevel Monte Carlo

Let us first look at the performance of a simple biased estimator Ƹ𝜇𝑘
Suppose 
• Bias = 𝑏(𝑘)

• Variance = 
𝜎𝑘
2

𝑁
• Computation cost per run = 𝑐(𝑘)

To achieve a root MSE = 𝑉𝑎𝑟 + 𝐵𝑖𝑎𝑠2 within 𝜖, we need (in terms of order):
• Bias = 𝑏(𝑘) ≤ 𝜖 ⇒ 𝑘 needs to be 𝑏−1 𝜖

• Var = 
𝜎𝑘
2

𝑁
≈

𝜎2

𝑁
≤ 𝜖2 ⇒𝑁 needs to be 

𝜎2

𝜖2

• Total computation cost = (cost per run) × (sample size) = 𝑐 𝑘 𝑁 =
𝑐 𝑏−1 𝜖

𝜎2

𝜖2



Multilevel Monte Carlo

MLMC:

෍

𝑘=0

𝐿
1

𝑁𝑘
෍

𝑖=1

𝑁𝑘

( ො𝜇𝑘
𝑖
− ො𝜇𝑘−1

𝑖
)

where for convenience, ො𝜇−1
𝑖
= 0. How to allocate 𝑁𝑘?

Solve
min

𝑁𝑘,0≤𝑘≤𝐿
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡

subject to 𝑉𝑎𝑟 + 𝐵𝑖𝑎𝑠2 ≤ 𝜖

• Bias = 𝑏 𝐿 ≤ 𝜖 ⇒ 𝐿 needs to be 𝑏−1 𝜖

• Var = σ𝑘=0
𝐿 ෥𝜎𝑘

2

𝑁𝑘
where ෤𝜎𝑘

2 is the variance of ො𝜇𝑘
𝑖
− ො𝜇𝑘−1

𝑖
under coupling

• Total computation cost = σ𝑘=0
𝐿 𝑐 𝑘 𝑁𝑘



Multilevel Monte Carlo

To obtain the optimal allocation, solve the Lagrangian

෍

𝑘=0

𝐿

𝑐 𝑘 𝑁𝑘 + 𝜆 ෍

𝑘=0

𝐿
෤𝜎𝑘
2

𝑁𝑘
− 𝑂(𝜖)

which gives 𝑐 𝑘 −
𝜆෥𝜎𝑘

2

𝑁𝑘
2 = 0 or 𝑁𝑘 =

𝜆෥𝜎𝑘

𝑐 𝑘
. Plugging back, we get

• Var = 
1

𝜆
σ𝑘=0
𝐿 ෤𝜎𝑘 𝑐 𝑘 which needs to be = 𝜖2 ⇒ 𝜆 =

σ𝑘=0
𝐿 ෥𝜎𝑘 𝑐 𝑘

𝜖2

• Total computation cost = 𝜆σ𝑘=0
𝐿 ෤𝜎𝑘 𝑐 𝑘 =

σ𝑘=0
𝐿 ෥𝜎𝑘 𝑐 𝑘

2

𝜖2
=

σ𝑘=0
𝑏−1 𝜖

෥𝜎𝑘 𝑐 𝑘
2

𝜖2



Multilevel Monte Carlo

Discretizing stochastic differential equation: To simulate 𝐸 𝑓 𝑋𝑇 where 𝑋𝑇 is the 
solution of an SDE, we use 

1

𝑁
σ𝑖=1
𝑁 𝑓 ෠𝑋𝑇/𝑘 where ෠𝑋𝑇/𝑘 is the solution obtained from 

an Euler discretization with time increment 𝑇/𝑘. 

Simple biased estimator: 𝑏(𝑘) = 1/𝑘, 𝑐 𝑘 = 𝑘 under regularity conditions

Total computation cost = 𝑐 𝑏−1 𝜖
𝜎2

𝜖2
= 𝑂

1

𝜖3

MLMC: We use a coupling of 𝑓 ෠𝑋𝑇/𝑀𝑘 and 𝑓 ෠𝑋𝑇/𝑀𝑘−1 where 𝑘 denotes the grid 
scale. Then 𝑏(𝑘) = 𝑀−𝑘, 𝑐 𝑘 = 𝑀𝑘,  ෤𝜎𝑘

2 = 𝑀−𝑘

Total computation cost =
σ
𝑘=0
𝑏−1(𝜖)

෥𝜎𝑘 𝑐 𝑘
2

𝜖2
= 𝑂

1

𝜖2
log 𝜖 2



Multilevel Monte Carlo

Steady-state estimation of Markov chain: To estimate 𝐸 𝑓 𝑋∞ for a Markov 
chain 𝑋𝑡 , 𝑡 = 1,2, …, we simulate up to 𝑋𝑘 and output 

1

𝑁
σ𝑖=1
𝑘 𝑓 𝑋𝑘

𝑖
. 

Simple biased estimator: 𝑏(𝑘) = 𝛽𝑘 for 𝛽 < 1, 𝑐 𝑘 = 𝑘 under regularity 
conditions

Total computation cost = 𝑐 𝑏−1 𝜖
𝜎2

𝜖2
= 𝑂

1

𝜖2
log

1

𝜖

MLMC:

No improvement beyond logarithmic: ready to check because 
1

𝜖2
is an intrinsic 

cost even with unbiased estimator. However, MLMC can still provide 
improvement in the following sense



Multilevel Monte Carlo

MLMC can turn a biased estimator into an unbiased estimator, by using a randomized level

This facilitates statistical inference of the simulation output, e.g., if we can estimate 𝐸𝑓(𝑋∞) by using unbiased 
𝑌1, … , 𝑌𝑛, then we can use standard normality tool for constructing confidence interval for 𝐸𝑓(𝑋∞) without 
worrying about the bias caused by the run-length per run

Consider

𝐸 Ƹ𝜇∞ = ෍

𝑘=0

∞

𝐸 Ƹ𝜇𝑘 − 𝐸 Ƹ𝜇𝑘−1 = 𝐸 ෍

𝑘=0

∞
Ƹ𝜇𝑘 − Ƹ𝜇𝑘−1 𝐼 𝑁 ≥ 𝑘

𝑃 𝑁 ≥ 𝑘
= 𝐸 ෍

𝑘=0

𝑁
Ƹ𝜇𝑘 − Ƹ𝜇𝑘−1
𝑃 𝑁 ≥ 𝑘

where 𝑁 is a random level independent of Ƹ𝜇𝑘’s

σ𝑘=0
𝑁 ෝ𝜇𝑘−ෝ𝜇𝑘−1

𝑃 𝑁≥𝑘

• is an unbiased estimator of 𝜇 = 𝐸[ Ƹ𝜇∞] (under technical condition that 𝐸 σ𝑘=0
∞ Ƹ𝜇𝑘 − Ƹ𝜇𝑘−1 < ∞)

• has finite variance under suitable choice of 𝑁 (e.g., if 𝑁 is power-law decay in the Markov chain example)



Multilevel Monte Carlo

MLMC is actively studied in applying to stochastic gradient descent, 
MCMC..

The unbiased estimation made possible by MLMC is an example of exact 
estimation, which belongs to a wider umbrella of study on unbiased 
estimators for stochastic processes that include:

Perfect sampling / Coupling from the past

Regenerative simulation



Rare-Event Simulation

Goals: 

• Estimate 𝑝 = 𝑃(ℎ(𝑿) ∈ 𝐴) for some rare-event set 𝐴, and ℎ(𝑿) is the output of a 
stochastic model

• Understand how the rare event arises (i.e., the “most likely path to catastrophe”)

Applications: risk analysis in industrial processes, operations, insurance, finance… 

• ℎ(𝑿) can be a portfolio return, workload of an operations system..

• 𝐴 can denote the extreme set {𝑦: 𝑦 ≥ 𝛾} for an exceedance threshold 𝛾

Compared to extreme value theory (using data directly), rare-event simulation can 
be viewed as a model-based approach to quantify extreme risk



Rare-Event Simulation

Recall:

• We want an estimate Ƹ𝑝 to be close to 𝑝 relative to the magnitude of 𝑝

• By Markov inequality, the needed sample size 𝑛 to achieve a relative 

discrepancy of 𝜖 with confidence 1 − 𝛼 is ≥
𝜎2

𝛼𝜖2𝑝2

• Crude MC has relative error (RE) = 𝑂
1

𝑝

• If RE = 
𝜎

𝑝
grows slowly in 𝑝, the algorithm is efficient



Rare-Event Simulation

Recall:

• We want an estimate Ƹ𝑝 to be close to 𝑝 relative to the magnitude of 𝑝

• By Markov inequality, the needed sample size 𝑛 to achieve a relative 

discrepancy of 𝜖 with confidence 1 − 𝛼 is ≥
𝜎2

𝛼𝜖2𝑝2

• Crude MC has relative error (RE) = 𝑂
1

𝑝

• If RE = 
𝜎

𝑝
grows slowly in 𝑝, the algorithm is efficient

• This view is taken assuming we use i.i.d. copies and take 
average to estimate 𝑝 (e.g., IS). We can have a more general 
estimation procedure (e.g., cross-entropy, multi-level splitting)

• How is “slowly” quantified?



Rare-Event Simulation

To obtain efficiency guarantees from variance reduction, we need to 
leverage structural knowledge/analysis (“No free lunch”)

• importance sampling 
• multi-level splitting
• conditional Monte Carlo
• …

• cross-entropy
• subset simulation
• …

Problem 
Complexity

Efficiency 
Guarantee

Challenging..



Efficiency Notions

Introduce a rarity parameter, say 𝛾, that models the level of rarity of 𝑝𝛾 such that as 
𝛾 → ∞, 𝑝𝛾 → 0

E.g., 𝛾 can be the exceedance threshold in 𝑃(ℎ 𝑿 ≥ 𝛾)

Recall IS:

• Call 𝑃 the original distribution generating 𝑿, and ෨𝑃 the IS distribution and ෨𝐸[⋅] the 
corresponding expectation 

• Call 𝑍𝛾 = ℎ 𝑿 𝐿(𝑿) the output of IS

A popular efficiency notion is asymptotic optimality / logarithmic efficiency:

lim
𝛾→∞

log ෨𝐸 𝑍𝛾
2

log ෨𝐸 𝑍𝛾
= 2



Efficiency Notions

lim
𝛾→∞

log ෨𝐸 𝑍𝛾
2

log ෨𝐸 𝑍𝛾
= 2

• This criterion means the exponential decay rates of ෨𝐸 𝑍𝛾
2 and ෨𝐸 𝑍𝛾

2
in terms of 𝛾 are the same

• Suppose we have a large deviations asymptotic ෨𝐸 𝑍𝛾 = 𝑝𝛾 ∼ 𝑝𝑜𝑙𝑦 𝛾 𝑒−𝛾𝐼 for a decay rate 𝐼. Then a 
polynomial-growth RE is a sufficient condition

• Note: ෨𝐸 𝑍𝛾
2 ≥ ෨𝐸 𝑍𝛾

2
⇒

log ෨𝐸 𝑍𝛾
2

log ෨𝐸 𝑍𝛾
≥ 2 ⇒ The above holds if

limsup
𝛾→∞

log ෨𝐸 𝑍𝛾
2

log ෨𝐸 𝑍𝛾
≤ 2

which is usually the focus of analysis

• Asymptotic optimality is easier to satisfy for many problems than bounded RE: limsup
𝛾→∞

෨𝐸 𝑍𝛾
2

෨𝐸 𝑍𝛾
2 < ∞



Efficiency Notions

How do we:

• come up with a good IS and

• show it is efficient?

In the light-tailed case,

• Large deviations (LD) asymptotic for 𝑝𝛾 means it decays exponentially in the rarity parameter 𝛾

• We trace the LD rate function and use the associated exponential tilting to construct IS

• IS can be viewed as a strengthened estimate (more accurate) of LD (more crude), if we know the 
LD (i.e., some level of analytical tractability)

• There are complications however

Let’s consider some simple examples to illustrate the principle, then discuss more generally



Importance Sampling on Processes

We can keep the dependence property of a stochastic process in the IS

e.g., if we estimate 𝐸[ℎ 𝑋1, … , 𝑋𝑛 ] where 𝑋𝑖 ∼ 𝑃 i.i.d., we can construct IS that keeps the 
i.i.d. structure but each tilting to ෨𝑃, with likelihood ratio

𝐿 𝑋1, … , 𝑋𝑛 =ෑ

𝑖=1

𝑛
𝑑𝑃

𝑑 ෨𝑃
(𝑋𝑖)

Similarly, if we estimate 𝐸[ℎ 𝑋1, … , 𝑋𝑛 ] where 𝑋𝑖 , 𝑖 = 1,2. . . is a Markov chain with initial 
distribution 𝑃(𝑥) and transition 𝑃(𝑥′|𝑥), we can construct IS that keeps the Markov 
structure but tilting to ෨𝑃, with likelihood ratio

𝐿 𝑋1, … , 𝑋𝑛 =
𝑃 𝑋1
෨𝑃 𝑋2

ෑ

𝑖=2

𝑛
𝑃(𝑋𝑖|𝑋𝑖−1)

෨𝑃(𝑋𝑖|𝑋𝑖−1)



Importance Sampling and Large Deviations

Consider efficiently estimating 𝑝𝑛 = 𝑃(𝑋1 +⋯+ 𝑋𝑛 > 𝑛𝑎) where 𝑋𝑖 are i.i.d.

If 𝑎 > 𝐸[𝑋𝑖], then by LLN 𝑝𝑛 → 0 as 𝑛 → ∞. How fast?

If 𝑋𝑖 is light-tailed, then it satisfies a large deviations asymptotic

lim
𝑛→∞

1

𝑛
log 𝑝𝑛 = −𝐼(𝑎)

where 𝐼(𝑎) = sup
𝜃

𝜃𝑎 − 𝜓 𝜃 is the rate function given by the Legendre transform of 

𝜓(𝜃) = log 𝐸 𝑒𝜃𝑋 , the logarithmic moment generating function of 𝑋𝑖

In other words, 𝑝𝑛 decays exponentially in 𝑛 with rate 𝐼(𝑎)



Importance Sampling and Large Deviations

Upper bound: 

• Chernoff’s inequality implies
𝑃 𝑋1 +⋯+ 𝑋𝑛 > 𝑛𝑎 ≤ 𝑒−𝑛𝑎𝜃+𝑛𝜓 𝜃

for any 𝜃 ≥ 0

• Choose the best 𝜃

𝑃 𝑋1 +⋯+ 𝑋𝑛 > 𝑛𝑎 ≤ 𝑒
−𝑛 sup

𝜃≥0
𝑎𝜃−𝜓 𝜃

= 𝑒−𝑛𝐼 𝑎



Importance Sampling and Large Deviations

Lower bound:

• Let 𝜃∗ be the solution of the optimization that gives 𝐼(𝑎) ⇒ root of 𝜓′ 𝜃∗ = 𝑎

• Consider a change of measure that exponentially tilts 𝑑𝑃 to 𝑑 ෨𝑃 = 𝑒𝜃
∗𝑥−𝜓 𝜃∗ 𝑑𝑃

• Letting 𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛,

𝑃 𝑆𝑛 > 𝑛𝑎 = ෨𝐸 𝑒−𝜃
∗𝑆𝑛+𝑛𝜓 𝜃∗ ; 𝑆𝑛 > 𝑛𝑎 = 𝑒−𝑛𝐼 𝑎 ෨𝐸 𝑒−𝜃

∗ 𝑆𝑛−𝑛𝑎 ; 𝑆𝑛 > 𝑛𝑎

≥ 𝑒−𝑛𝐼 𝑎 ෨𝐸 𝑒−𝜃
∗𝑛ത𝑌; 0 < ത𝑌 < 𝜖 ≥ 𝑒−𝑛 𝐼 𝑎 +𝜃∗𝜖

for any 𝜖 > 0, where ത𝑌 = (𝑆𝑛 − 𝑛𝑎)/𝑛



Importance Sampling and Large Deviations

The lower bound proof hints an IS that tilts 𝑑𝑃 to 𝑑 ෨𝑃 = 𝑒𝜃
∗𝑥−𝜓 𝜃∗ 𝑑𝑃

on each 𝑋𝑖, keeping the i.i.d. structure intact

This IS is indeed asymptotically optimal, since

෨𝐸 𝐿2; 𝑆𝑛 > 𝑛𝑎 = ෨𝐸 𝑒−2𝜃
∗𝑆𝑛+2𝑛𝜓 𝜃∗ ; 𝑆𝑛 > 𝑛𝑎

= 𝑒−2𝑛𝐼 𝑎 ෨𝐸 𝑒−2𝜃
∗ 𝑆𝑛−𝑛𝑎 ; 𝑆𝑛 > 𝑛𝑎 ≤ 𝑒−2𝑛𝐼 𝑎

But why exactly does it work?



A Reasoning

The stepwise exponential tilting with parameter 𝜃∗, leading to mean 𝑎, is approximately the conditional 
probability of each step given the rare event occurs (recall our guideline previously)

• The Markov chain generated by

𝑃∗ 𝑋𝑚+1 ∈ 𝑑𝑦 𝑆𝑚 = 𝑠𝑚 = 𝑃 𝑋𝑚+1 ∈ 𝑑𝑦
𝑃 𝑆𝑛 > 𝑛𝑎 𝑆𝑚+1 = 𝑠𝑚 + 𝑦

𝑃 𝑆𝑛 > 𝑛𝑎 𝑆𝑚 = 𝑠𝑚
is a zero-variance measure that, when used in IS, unbiasedly estimates the rare-event problem

• For fixed 𝑚, as 𝑛 → ∞,

𝑃∗ 𝑋𝑚+1 ∈ 𝑑𝑦 𝑆𝑚 = 𝑠𝑚 = 𝑃 𝑋𝑚+1 ∈ 𝑑𝑦
𝑃(𝑆𝑛−𝑚−1 > 𝑛𝑎 − 𝑠𝑚 − 𝑦)

𝑃 𝑆𝑛−𝑚 > 𝑛𝑎 − 𝑠𝑚
→ 𝑃 𝑋𝑚+1 ∈ 𝑑𝑦 𝑒𝜃

∗𝑦−𝜓 𝜃∗

The zero-variance measure representation holds more generally for Markov chains (leading to the adaptive IS 
method)



Most Likely Path

The most likely sample path to achieve the rare event is the path when every step increments by 𝑎. All other 
paths have exponentially smaller likelihood

Consider a more general large deviations principle

lim
𝑛→∞

1

𝑛
log𝑃 𝑆𝑚 1≤𝑚≤𝑛 ∈ 𝐴 = lim

𝑛→∞

1

𝑛
log𝑃 ሚ𝑆𝑡 0≤𝑡≤1

∈ ሚ𝐴 = −𝐼 ሚ𝐴

where ሚ𝑆𝑡 = 𝑆 𝑛𝑡 is the continuous interpolation of 𝑆𝑚,

𝐼 ሚ𝐴 = inf න
𝑡=0

1

𝐽 𝑥′ 𝑡 𝑑𝑡 : 𝑥 0 = 0, 𝑥 𝑡 ∈ ሚ𝐴

where is the sample-path rate function obtained from a variational problem, and 𝐽 𝑦 = sup
𝜃

𝜃𝑦 − 𝜓 𝜃 is 

the instantaneous rate function

This problem has a linear solution 𝑥∗(𝑡). 

By picking smaller ሚ𝐴 and applying the same principle, we see other paths occurs with exponentially smaller 
likelihood conditional on the rare event



Simulating Random Walk First Passage

Consider estimating 𝑝𝑏 = 𝑃(𝜏 < ∞) where 𝜏 = min{𝑛: 𝑆𝑛 > 𝑏}, 𝑆𝑛 = 𝑋1 +
⋯+𝑋𝑛, 𝑋𝑖 i.i.d. with mean 𝐸 𝑋𝑖 < 0, and 𝑏 > 0

• A random walk with negative drift, starting from zero, may never hit a 
positive level ⇒ 𝑝𝑏 < 1

• As 𝑏 → ∞, 𝑝𝑏 → 0

• It’s a rare-event simulation problem and, when running crude MC, we may 
never know when to stop..



Simulating Random Walk First Passage

Suppose 𝑋𝑖 is light-tailed. Use an exponentially tilted change of measure on each i.i.d. 𝑋𝑖
with 𝜓 𝜃∗ = 0

𝑃 𝜏 < ∞ = ෨𝐸 𝑒−𝜃
∗𝑆𝜏+𝜏 𝜓 𝜃∗ ; 𝜏 < ∞ = 𝑒−𝜃

∗𝑏 ෨𝐸 𝑒−𝜃
∗ 𝑆𝜏−𝑏 ; 𝜏 < ∞ = 𝑒−𝜃

∗𝑏 ෨𝐸 𝑒−𝜃
∗𝑌

∼ 𝑒−𝜃
∗𝑏

where 𝑌 is the overshoot variable above threshold 𝑏. In the above, the individual likelihood 
ratios are multiplied till the stopping time 𝜏 (using its martingale property)

Under the change of measure, the random walk has a positive drift, so 𝑃 𝜏 < ∞ = 1

IS uses the same exponential tilting. This is asymptotically optimal and the simulation is 
guaranteed to stop



Simulating Random Walk First Passage

Suppose 𝑋𝑖 is light-tailed. Use an exponentially tilted change of measure on each i.i.d. 𝑋𝑖
with 𝜓 𝜃∗ = 0

𝑃 𝜏 < ∞ = ෨𝐸 𝑒−𝜃
∗𝑆𝜏+𝜏 𝜓 𝜃∗ ; 𝜏 < ∞ = 𝑒−𝜃

∗𝑏 ෨𝐸 𝑒−𝜃
∗ 𝑆𝜏−𝑏 ; 𝜏 < ∞ = 𝑒−𝜃

∗𝑏 ෨𝐸 𝑒−𝜃
∗𝑌

∼ 𝑒−𝜃
∗𝑏

where 𝑌 is the overshoot variable above threshold 𝑏. In the above, the individual likelihood 
ratios are multiplied till the stopping time 𝜏 (using its martingale property)

Under the change of measure, the random walk has a positive drift, so 𝑃 𝜏 < ∞ = 1

IS uses the same exponential tilting. This is asymptotically optimal and the simulation is 
guaranteed to stop



Simulating Random Walk First Passage

Why does 𝜓 𝜃∗ = 0 arise?

The sample-path large deviations rate function is now

𝐼 = inf න
𝑡=0

∞

𝐽 𝑥′ 𝑡 𝑑𝑡 : 𝑥 0 = 0, 𝑥 𝑡 ≥ 1

which gives linear solution 𝑥∗(𝑡) and 𝜃∗ is the solution to obtain 𝐽(⋅)

Similar reasoning on IS and most likely path as before via conditional 
probability given rare event



Summary and Pitfall of Roadmap

So far we suggest:

• Analyze LD which hints an IS

• Show asymptotic optimality of IS

• Reason why it works by arguing its closeness to zero-variance 
conditional measure given rare event

However, an IS distribution close to the zero-variance measure does 
not guarantee it’s asymptotically optimal

Sometimes, the above roadmap fails



A General Framework

Estimate 𝑃(𝑋 ∈ 𝐴) for light-tailed (multivariate) 𝑋 with log. MGF 𝜓(𝜃)

LD principle gives
𝑃 𝑋 ∈ 𝐴 ≈ 𝑒−𝐼 𝐴

where 𝐼 𝐴 = inf𝑎∈𝐴 𝐼(𝑎), and 𝐼 𝑎 = 𝑠𝑢𝑝
𝜃
{𝜃′𝑎 − 𝜓 𝜃 }

Suppose we solve the rate function and obtain 𝑎∗, with corresponding 
exponential tilting parameter 𝜃∗

Consider IS that exponentially tilts 𝑃, giving

𝐿 = 𝑒−𝜃
∗′𝑥+𝜓 𝜃∗



A General Framework

To analyze RE, consider 
෨𝐸 𝐿2; 𝑥 ∈ 𝐴 = ෨𝐸 𝑒−2𝜃

∗′𝑥+2𝜓 𝜃∗ ; 𝑥 ∈ 𝐴

= 𝑒−2𝐼(𝑎
∗) ෨𝐸 𝑒−2𝜃

∗′(𝑥−𝑎∗) ; 𝑥 ∈ 𝐴

If 2𝜃∗′(𝑥 − 𝑎∗) ≥ 0 for all 𝑥 ∈ 𝐴, then we 
have asymptotic optimality

This is equivalent to saying the rare-event 
set is contained in the half-space cut by the 
tangent line touching 𝑎∗ (𝜃∗ = ∇𝐼(𝑎∗))

𝑎∗

𝐴



Inefficiency of IS

This is true if 𝐴 is convex, because in 
this case 2𝜃∗′(𝑥 − 𝑎∗) ≥ 0 is the first 
order optimality condition for 
min
𝑎∈𝐴

𝐼(𝑎)

However, the IS is not efficient if the 
condition is violated

𝑎∗

𝐴



Dominating Points

In general, we can divide 𝐴 = ⋃𝑖𝐴𝑖
into individual “local” regions 𝐴𝑖
where reach region has its own 
“dominating point” 𝑎𝑖, i.e., a point 
which 2𝜃∗′(𝑥 − 𝑎𝑖) ≥ 0 for all 𝑥 ∈
𝐴𝑖

𝑎1

𝐴

𝑎2



Dominating Points

For each region 𝐴𝑖, the exponential tilting to 𝑎𝑖, with 
likelihood ratio denoted 𝐿𝑖, is asymptotically optimal

We can use IS that consists of a mixture of individual 
exponential tilting, i.e.,

𝑑 ෨𝑃 =෍

𝑖

𝑞𝑖𝑑𝑃𝑎𝑖

where 𝑞𝑖 = mixing probability, 𝑑𝑃𝑎𝑖 = exponential tilting to 
point 𝑎𝑖

If 𝑞𝑖 > 0 for all 𝑖, this scheme is asymptotically optimal 
because

෨𝐸 𝐿2; 𝑋 ∈ 𝐴 = ෨𝐸
𝑑𝑃

σ𝑖 𝑞𝑖𝑑𝑃𝑎𝑖

2

; 𝑋 ∈ 𝐴

≤෍

𝑖

෨𝐸
𝑑𝑃

σ𝑖 𝑞𝑖𝑑𝑃𝑎𝑖

2

; 𝑋 ∈ 𝐴𝑖 ≤෍

𝑖

1

𝑞𝑖
2
෨𝐸 𝐿𝑖

2; 𝑋 ∈ 𝐴𝑖

𝑎1

𝐴

𝑎2



Connecting Back..

How do dominating points and mixtures relate to the IS construction roadmap 
before?

In general, knowing the closeness to zero-variance measure and the most likely 
path (in the sense we discussed before) does not guarantee the stepwise 
exponentially tilted IS is efficient

Those IS are state-independent. To obtain efficient IS more generally, we use 
state-dependent schemes: 

• Write the sample-path LD problem as a Hamilton-Jacobi-Bellman equation and 
formulate a state-dependent IS based on dynamic programming

• Sometimes this problem is difficult to solve, and subsolution suffices which 
can give rise to mixture-based IS



Conditional Monte Carlo

• To estimate 𝐸 ℎ 𝑋 , we know 𝐸 ℎ 𝑋 𝑌 and can simulate 𝑌

• We output 𝑔 𝑌 = 𝐸 ℎ 𝑋 𝑌 as one simulation run output

• With 𝑛 simulation runs, we output
1

𝑛
෍

𝑖=1

𝑛

𝑔(𝑌𝑖)

• Conditional Monte Carlo is unbiased and has variance no more than crude 
MC

𝑉𝑎𝑟 𝐸 ℎ 𝑋 𝑌 ≤ 𝑉𝑎𝑟(ℎ 𝑋 )

because of the law of total variance

𝑉𝑎𝑟 ℎ 𝑋 = 𝑉𝑎𝑟 𝐸 ℎ 𝑋 𝑌 + 𝐸 𝑉𝑎𝑟 ℎ 𝑋 𝑌



Conditional Monte Carlo

• Conditional Monte Carlo has most variance reduction when ℎ(𝑋) and 
𝑌 are least dependent; zero variance when 𝑌 is independent of ℎ(𝑋)
(contrast with control variate)

• Conditional Monte Carlo is known to provide dramatic variance 
reduction for heavy-tailed rare-event estimation problems

• Stratification uses the other term in the law of total variance



Cross-Entropy Method

• Automatic approach to search for optimal parameter 𝜃 over a class of IS 𝑃𝜃 (not 
necessarily exponential tilting)

• Idea: Minimize the “distance” between 𝑃𝜃 and 𝑃∗, the theoretically optimal IS

• We minimize the Kullback-Leibler divergence or the relative entropy

𝐾𝐿(𝑃𝜃| 𝑃
∗ = න log

𝑑𝑃∗

𝑑𝑃𝜃
𝑑𝑃∗ = නlog 𝑓∗ 𝑥 𝑓∗ 𝑥 𝑑𝑥 − නlog 𝑓𝜃 𝑥 𝑓∗ 𝑥 𝑑𝑥

• It suffices to focus on maximizing

නlog 𝑓𝜃 𝑥 𝑓∗ 𝑥 𝑑𝑥

• Plugging in 𝑓∗(𝑥) ∝ 𝐼(𝑥 ∈ 𝐴)𝑓(𝑥), we get

නlog 𝑓𝜃 𝑥 𝑓∗ 𝑥 𝑑𝑥 = 𝐸[log 𝑓𝜃 𝑋 ; 𝑋 ∈ 𝐴]

• That is, we maximize the expected log-likelihood within the set 𝐴



Cross-Entropy Method

• Implementing this idea needs a “warm-start”

• Consider estimating 𝑃(𝑋 ∈ 𝐴𝛾), where 𝛾 = rarity parameter 

Iteratively run the following:

Given the current rarity level 𝛾𝑡 and IS ሚ𝑓𝜃𝑡, simulate 𝑋1, … , 𝑋𝑛𝑡 , and 
solve the sample average approximation 

max
𝜃

1

𝑛𝑡
෍

𝑖=1

𝑛𝑡

log 𝑓𝜃 𝑋𝑖 𝐼 𝑋𝑖 ∈ 𝐴𝛾𝑡
𝑓 𝑋𝑖
ሚ𝑓𝜃𝑡 𝑋𝑖

to obtain 𝜃𝑡+1, and increase the rarity to 𝛾𝑡+1



Cross-Entropy Method

• Other variants of this approach replace KL-divergence with the 
variance itself

• Other “automatic” methods for rare-event estimation include multi-
level splitting
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