Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methodsfor Bayesian

MCMC are the tools of choice in Bayesian computation for over 20 years whereas SMC have been widely used for 15 years in vision and robotics.

- Both MCMC and SMC are asymptotically (as you increase computational efforts) bias-free but computationally expensive.
- The development of new methodology combined to the emergence of cheap multicore architectures makes now SMC a powerful alternative/complementary approach to MCMC to address general Bayesian computational problems.

Sequential Monte Carlo Methodsfor Bayesian

Organization of Lectures

A. Doucet ()

Monte Carlo Methods

• A.D., J.F.G. De Freitas & N.J. Gordon (editors), *Sequential Monte Carlo Methods in Practice*, Springer-Verlag: New York, 2001.

- P. Del Moral, *Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications*, Springer-Verlag: New York, 2004.
- Webpage with links to papers and codes: http://www.stats.ox.ac.uk/~doucet/smc_resources.html
- Thousands of papers on the subject appear every year.

- State-Space Models (approx.3 hours)
 - SMC filtering and smoothing
 - Maximum likelihood parameter inference
 - Bayesian parameter inference
- Beyond State-Space Models (approx. 1 hour)
 - SMC methods for generic sequence of target distributions
 - SMC samplers.

A. Doucet ()

Some References and Resources

Feb. 2015

Feb. 2015

State-Space Models

• Let $\{X_t\}_{t \geq 1}$ be a latent/hidden \mathcal{X} -valued Markov process with

 $X_{1}\sim\mu\left(\cdot
ight)$ and $X_{t}|\left(X_{t-1}=x
ight)\sim f\left(\left.\cdot
ight|x
ight)$.

• Let $\{Y_t\}_{t \ge 1}$ be an \mathcal{Y} -valued Markov observation process such that observations are conditionally independent given $\{X_t\}_{t>1}$ and

$$Y_t | (X_t = x) \sim g(\cdot | x).$$

• General class of time series models aka Hidden Markov Models (HMM) including

$$X_t = \Psi\left(X_{t-1}, V_t
ight), \ Y_t = \Phi\left(X_t, W_t
ight)$$

where V_t , W_t are two sequences of i.i.d. random variables.

• Aim: Infer $\{X_t\}$ given observations $\{Y_t\}$ on-line or off-line.

A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Feb. 2015 State-Space Models

• Stochastic Volatility model

$$\begin{aligned} X_t &= \phi X_{t-1} + \sigma V_t, \quad V_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1) \\ Y_t &= \beta \exp\left(X_t/2\right) W_t, \quad W_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1) \end{aligned}$$

Biochemical Network model

$$\Pr \left(X_{t+dt}^{1} = x_{t}^{1} + 1, X_{t+dt}^{2} = x_{t}^{2} \middle| x_{t}^{1}, x_{t}^{2} \right) = \alpha x_{t}^{1} dt + o(dt),$$

$$\Pr \left(X_{t+dt}^{1} = x_{t}^{1} - 1, X_{t+dt}^{2} = x_{t}^{2} + 1 \middle| x_{t}^{1}, x_{t}^{2} \right) = \beta x_{t}^{1} x_{t}^{2} dt + o(dt),$$

$$\Pr \left(X_{t+dt}^{1} = x_{t}^{1}, X_{t+dt}^{2} = x_{t}^{2} - 1 \middle| x_{t}^{1}, x_{t}^{2} \right) = \gamma x_{t}^{2} dt + o(dt),$$

with

$$Y_k = X^1_{k\Delta T} + W_k$$
 with $W_k \overset{ ext{i.i.d.}}{\sim} \mathcal{N}\left(0,\sigma^2
ight)$.

• Nonlinear Diffusion model

 $dX_{t} = \alpha (X_{t}) dt + \beta (X_{t}) dV_{t}, V_{t} \text{ Brownian motion}$ $Y_{k} = \gamma (X_{k\Delta T}) + W_{k}, W_{k} \overset{\text{i.i.d.}}{\sim} \mathcal{N} (0, \sigma^{2}).$

- State-space models are ubiquitous in control, data mining, econometrics, geosciences, system biology etc. Since Jan. 2014, more than 16,900 papers have already appeared (source: Google Scholar).
- Finite State-space HMM: \mathcal{X} is a finite space, i.e. $\{X_t\}$ is a finite Markov chain

$$Y_t | (X_t = x) \sim g(\cdot | x)$$

• Linear Gaussian state-space model

$$X_{t} = AX_{t-1} + BV_{t}, \quad V_{t} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, I)$$
$$Y_{t} = CX_{t} + DW_{t}, \quad W_{t} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, I)$$

• Switching Linear Gaussian state-space model: $X_t = (X_t^1, X_t^2)$ where $\{X_t^1\}$ is a finite Markov chain,

$$X_{t}^{2} = A\left(X_{t}^{1}\right)X_{t-1}^{2} + B\left(X_{t}^{1}\right)V_{t}, \quad V_{t} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0, I\right)$$
$$Y_{t} = C\left(X_{t}^{1}\right)X_{t}^{2} + D\left(X_{t}^{1}\right)W_{t}, \quad W_{t} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0, I\right)$$

Sequential Monte Carlo Methodsfor Bayesian

Inference in State-Space Models

• Given observations $y_{1:t} := (y_1, y_2, \dots, y_t)$, inference about $X_{1:t} := (X_1, \dots, X_t)$ relies on the posterior

$$p(x_{1:t}|y_{1:t}) = rac{p(x_{1:t}, y_{1:t})}{p(y_{1:t})}$$

where

A. Doucet ()

$$p(x_{1:t}, y_{1:t}) = \underbrace{\mu(x_1) \prod_{k=2}^{t} f(x_k | x_{k-1}) \prod_{k=1}^{t} g(y_k | x_k)}_{p(x_{1:t})},$$
$$p(y_{1:t}) = \int \cdots \int p(x_{1:t}, y_{1:t}) dx_{1:t}$$

- When X is finite & linear Gaussian models, {p (x_t | y_{1:t})}_{t≥1} can be computed exactly. For non-linear models, approximations are required: EKF, UKF, Gaussian sum filters, etc.
- Approximations of $\{p(x_t | y_{1:t})\}_{t=1}^{T}$ provide approximation of $p(x_{1:T} | y_{1:T})$.

Feb. 2015

Monte Carlo Methods Basics

• Assume you can generate $X_{1:t}^{(i)} \sim p(x_{1:t} | y_{1:t})$ where i = 1, ..., N then MC approximation is

$$\widehat{p}(x_{1:t}|y_{1:t}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{1:t}^{(i)}}(x_{1:t})$$

Integration is straightforward.

$$\int \varphi_{t}(x_{1:t}) p(x_{1:t} | y_{1:t}) dx_{1:t} \approx \int \varphi_{t}(x_{1:t}) \hat{p}(x_{1:t} | y_{1:t}) dx_{1:t}$$
$$= \frac{1}{N} \sum_{i=1}^{N} \varphi\left(X_{1:t}^{(i)}\right)$$

• Marginalization is straightforward.

$$\widehat{p}(x_{k}|y_{1:t}) = \int \widehat{p}(x_{1:t}|y_{1:t}) dx_{1:k-1} dx_{k+1:t} = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{k}^{(i)}}(x_{k})$$

• Basic and key property: $\mathbb{V}\left[\frac{1}{N}\sum_{i=1}^{N}\varphi\left(X_{1:t}^{(i)}\right)\right] = \frac{C(t\dim(\mathcal{X}))}{N}$, i.e. rate of convergence to zero is independent of dim (\mathcal{X}) and t.

Sequential Monte Carlo Methodsfor Bayesian

Standard Bayesian Recursion

- In most textbooks, you will find the following recursion for $\{p(x_t|y_{1:t})\}_{t>1}$.
- Prediction step

A. Doucet ()

$$p(x_t | y_{1:t-1}) = \int p(x_{t-1}, x_t | y_{1:t-1}) dx_{t-1}$$

= $\int p(x_t | y_{1:t-1}, x_{t-1}) p(x_{t-1} | y_{1:t-1}) dx_{t-1}$
= $\int f(x_t | x_{t-1}) p(x_{t-1} | y_{1:t-1}) dx_{t-1}.$

Bayes Updating step

$$p(x_t | y_{1:t}) = rac{g(y_t | x_t) p(x_t | y_{1:t-1})}{p(y_t | y_{1:t-1})}$$

where

$$p(y_t|y_{1:t-1}) = \int g(y_t|x_t) p(x_t|y_{1:t-1}) dx_t$$

Feb. 2015

9 / 126

Monte Carlo Methods

- **Problem 1**: We cannot typically generate exact samples from $p(x_{1:t}|y_{1:t})$ for non-linear non-Gaussian models.
- **Problem 2**: Even if we could, algorithms to generate samples from $p(x_{1:t} | y_{1:t})$ will have at least complexity $\mathcal{O}(t)$.
- Typical solution to problem 1 is to generate approximate samples using MCMC methods but these methods are not recursive.
- **SMC Methods** solves *partially* Problem 1 and Problem 2 by breaking the problem of sampling from $p(x_{1:t}|y_{1:t})$ into a collection of simpler subproblems. First approximate $p(x_1|y_1)$ and $p(y_1)$ at time 1, then $p(x_{1:2}|y_{1:2})$ and $p(y_{1:2})$ at time 2 and so on.
- Each target distribution is approximated by a cloud of random samples termed *particles* evolving according to *importance sampling* and *resampling* steps.

• SMC approximate directly $\left\{ p\left(\left. x_{1:t} \right| y_{1:t} \right) \right\}_{t \ge 1}$ not $\left\{ p\left(\left. x_t \right| y_{1:t} \right) \right\}_{t \ge 1}$ and relies on

$$p(x_{1:t}|y_{1:t}) = \frac{p(x_{1:t}, y_{1:t})}{p(y_{1:t})} = \frac{g(y_t|x_t) f(x_t|x_{t-1})}{p(y_t|y_{1:t-1})} \frac{p(x_{1:t-1}, y_{1:t-1})}{p(y_{1:t-1})}$$
$$= \frac{g(y_t|x_t) f(x_t|x_{t-1}) p(x_{1:t-1}|y_{1:t-1})}{p(y_t|y_{1:t-1})}$$

where

$$p(y_t|y_{1:t-1}) = \int g(y_t|x_t) p(x_{1:t}|y_{1:t-1}) dx_{1:t}$$

• This can be alternatively written as

 $\begin{array}{ll} \textbf{Prediction} & p\left(x_{1:t} \middle| y_{1:t-1}\right) = f\left(x_t \middle| x_{t-1}\right) p\left(x_{1:t-1} \middle| y_{1:t-1}\right), \\ \textbf{Update} & p\left(x_{1:t} \middle| y_{1:t}\right) = \frac{g\left(y_t \middle| x_t\right) p\left(x_{1:t} \middle| y_{1:t-1}\right)}{p\left(y_t \middle| y_{1:t-1}\right)}. \end{array}$

• SMC is a simple and natural simulation-based implementation of this recursion. Sequential Monte Carlo Methodsfor Bayesian

Feb. 2015 12 / 126 • Assume you have at time t-1

$$\widehat{p}(x_{1:t-1}|y_{1:t-1}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{1:t-1}^{(i)}}(x_{1:t-1})$$

• By sampling $\widetilde{X}_{t}^{(i)} \sim f\left(x_{t} | X_{t-1}^{(i)}\right)$ and setting $\widetilde{X}_{1:t}^{(i)} = \left(X_{1:t-1}^{(i)}, \widetilde{X}_{t}^{(i)}\right)$ then

$$\widehat{\rho}\left(x_{1:t} \middle| y_{1:t-1}\right) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\widetilde{X}_{1:t}^{(i)}}\left(x_{1:t}\right).$$

• Sampling from $f(x_t | x_{t-1})$ is usually straightforward and can be done even if $f(x_t | x_{t-1})$ does not admit any analytical expression; e.g. biochemical network models.

Multinomial Resampling

A. Doucet ()

• We have a "weighted" approximation $\widetilde{p}(x_{1:t}|y_{1:t})$ of $p(x_{1:t}|y_{1:t})$

Sequential Monte Carlo Methodsfor Bayesian

$$\widetilde{p}(x_{1:t}|y_{1:t}) = \sum_{i=1}^{N} W_t^{(i)} \delta_{\widetilde{X}_{1:t}^{(i)}}(x_{1:t})$$

To obtain N samples X⁽ⁱ⁾_{1:t} approximately distributed according to p(x_{1:t}|y_{1:t}), resample N times with replacement

$$X_{1:t}^{(i)} \sim \widetilde{p}\left(x_{1:t} \middle| y_{1:t}\right)$$

to obtain

$$\widehat{p}(x_{1:t}|y_{1:t}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{1:t}^{(i)}}(x_{1:t}) = \sum_{i=1}^{N} \frac{N_t^{(i)}}{N} \delta_{\widetilde{X}_{1:t}^{(i)}}(x_{1:t})$$
where $\left\{N_t^{(i)}\right\}$ follow a multinomial with $\mathbb{E}\left[N_t^{(i)}\right] = NW_t^{(i)}$,
 $\mathbb{V}\left[N_t^{(1)}\right] = NW_t^{(i)}\left(1 - W_t^{(i)}\right)$.
This can be achieved in $\mathcal{O}(N)$.

• Our target at time *t* is

Feb. 2015

13 / 126

$$p(x_{1:t}|y_{1:t}) = \frac{g(y_t|x_t) p(x_{1:t}|y_{1:t-1})}{p(y_t|y_{1:t-1})}$$

so by substituting $\widehat{p}\left(\left.x_{1:t}\right|y_{1:t-1}\right)$ to $p\left(\left.x_{1:t}\right|y_{1:t-1}\right)$ we obtain

Importance Sampling Implementation of Updating Step

$$\widehat{p}(y_t|y_{1:t-1}) = \int g(y_t|x_t) \widehat{p}(x_{1:t}|y_{1:t-1}) dx_{1:t}$$
$$= \frac{1}{N} \sum_{i=1}^{N} g(y_t|\widetilde{X}_t^{(i)}).$$

• We now have

A. Doucet ()

$$\begin{split} \widetilde{p}(x_{1:t}|y_{1:t}) &= \frac{g(y_t|x_t)\,\widehat{p}(x_{1:t}|y_{1:t-1})}{\widehat{p}(y_t|y_{1:t-1})} = \sum_{i=1}^N W_t^{(i)} \delta_{\widetilde{X}_{1:t}^{(i)}}(x_{1:t}) \,. \end{split}$$
with $W_t^{(i)} \propto g(y_t|\widetilde{X}_t^{(i)})$, $\sum_{i=1}^N W_t^{(i)} = 1$.

Sequential Monte Carlo Methodsfor Bayesian

Vanilla SMC: Bootstrap Filter (Gordon et al., 1993)

$$\begin{split} \underline{\text{At time } t = 1} \\ \bullet \text{ Sample } \widetilde{X}_{1}^{(i)} \sim \mu\left(x_{1}\right) \text{ then} \\ \widetilde{p}\left(x_{1} \mid y_{1}\right) &= \sum_{i=1}^{N} W_{1}^{(i)} \delta_{\widetilde{X}_{1}^{(i)}}\left(x_{1}\right), \ W_{1}^{(i)} \propto g\left(y_{1} \mid \widetilde{X}_{1}^{(i)}\right). \\ \bullet \text{ Resample } X_{1}^{(i)} \sim \widetilde{p}\left(x_{1} \mid y_{1}\right) \text{ to obtain } \widehat{p}\left(x_{1} \mid y_{1}\right) &= \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{1}^{(i)}}\left(x_{1}\right). \\ \underline{\text{At time } t \geq 2} \\ \bullet \text{ Sample } \widetilde{X}_{t}^{(i)} \sim f\left(x_{t} \mid X_{t-1}^{(i)}\right), \text{ set } \widetilde{X}_{1:t}^{(i)} = \left(X_{1:t-1}^{(i)}, \widetilde{X}_{t}^{(i)}\right) \text{ and} \\ \widetilde{p}\left(x_{1:t} \mid y_{1:t}\right) &= \sum_{i=1}^{N} W_{t}^{(i)} \delta_{\widetilde{X}_{1:t}^{(i)}}\left(x_{1:t}\right), \ W_{t}^{(i)} \propto g\left(y_{t} \mid \widetilde{X}_{t}^{(i)}\right). \end{split}$$

Sequential Monte Carlo Methodsfor Bayesian

• Resample $X_{1:t}^{(i)} \sim \widetilde{p}(x_{1:t}|y_{1:t})$ to obtain $\widehat{p}(x_{1:t}|y_{1:t}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{1:t}^{(i)}}(x_{1:t}).$

Feb. 2015

• At time t, we get

$$\widetilde{p}(x_{1:t}|y_{1:t}) = \sum_{i=1}^{N} W_t^{(i)} \delta_{\widetilde{\chi}_{1:t}^{(i)}}(x_{1:t}),$$

$$\widehat{p}(x_{1:t}|y_{1:t}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\chi_{1:t}^{(i)}}(x_{1:t}).$$

• The marginal likelihood estimate is given by

$$\widehat{p}(y_{1:t}) = \prod_{k=1}^{t} \widehat{p}(y_k | y_{1:k-1}) = \prod_{k=1}^{t} \left(\frac{1}{N} \sum_{i=1}^{N} g\left(y_k | \widetilde{X}_k^{(i)}\right) \right).$$

- Computational complexity is $\mathcal{O}(N)$ at each time step and memory requirements $\mathcal{O}(tN)$.
- If we are only interested in $p(x_t|y_{1:t})$ or $p(s_t(x_{1:t})|y_{1:t})$ where $s_t(x_{1:t}) = \Psi_t(x_t, s_{t-1}(x_{1:t-1}))$ e.g. $s_t(x_{1:t}) = \sum_{k=1}^t x_k^2$ is fixed-dimensional then memory requirements $\mathcal{O}(N)$.

Figure: $p(x_1|y_1)$, $p(x_2|y_{1:2})$ and $\widehat{\mathbb{E}}[X_1|y_1]$, $\widehat{\mathbb{E}}[X_2|y_{1:2}]$ (top) and particle approximation of $p(x_{1:2}|y_{1:2})$ (bottom)

Figure: $p(x_1|y_1)$ and $\widehat{\mathbb{E}}[X_1|y_1]$ (top) and particle approximation of $p(x_1|y_1)$

Figure: $p(x_t | y_{1:t})$ and $\widehat{\mathbb{E}}[X_t | y_{1:t}]$ for t = 1, 2, 3 (top) and particle approximation of $p(x_{1:3} | y_{1:3})$ (bottom)

Figure: $p(x_t|y_{1:t})$ and $\widehat{\mathbb{E}}[X_t|y_{1:t}]$ for t = 1, ..., 10 (top) and particle approximation of $p(x_{1:10}|y_{1:10})$ (bottom)

A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Feb. 2015 21 / 126 Remarks

- Empirically this SMC strategy performs well in terms of estimating the marginals $\{p(x_t|y_{1:t})\}_{t\geq 1}$. This is what is only necessary in many applications thankfully.
- However, the joint distribution p (x_{1:t} | y_{1:t}) is poorly estimated when t is large; i.e. we have in the previous example

$$\widehat{p}(x_{1:11}|y_{1:24}) = \delta_{X_{1:11}^*}(x_{1:11}).$$

Degeneracy problem. For any N and any k, there exists t (k, N) such that for any t ≥ t (k, N)

$$\widehat{p}(x_{1:k}|y_{1:t}) = \delta_{X_{1:k}^*}(x_{1:k});$$

 $\widehat{p}(x_{1:t}|y_{1:t})$ is an unreliable approximation of $p(x_{1:t}|y_{1:t})$ as $t \nearrow$.

Figure: $p(x_t | y_{1:t})$ and $\widehat{\mathbb{E}}[X_t | y_{1:t}]$ for t = 1, ..., 24 (top) and particle approximation of $p(x_{1:24} | y_{1:24})$ (bottom)

A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Feb. 2015 22 / 126 Another Illustration of the Degeneracy Phenomenon

• For the linear Gaussian state-space model described before, we can compute exactly S_t/t where

$$S_{t} = \int \left(\sum_{k=1}^{t} x_{k}^{2}\right) p(x_{1:t}|y_{1:t}) dx_{1:t}$$

using Kalman techniques.

• We compute the SMC estimate of this quantity using \widehat{S}_t/t where

$$\widehat{S}_{t} = \int \left(\sum_{k=1}^{t} x_{k}^{2}\right) \widehat{p}\left(x_{1:t} | y_{1:t}\right) dx_{1:t}$$

can be computed sequentially.

Another Illustration of the Degeneracy Phenomenon

Figure: S_t/t obtained through the Kalman smoother (blue) and its SMC estimate \hat{S}_t/t (red).

Stronger Convergence Results

A. Doucet ()

• Assume the following **exponentially stability assumption**: For any x_1, x'_1

Sequential Monte Carlo Methodsfor Bayesian

$$\frac{1}{2}\int \left| p\left(x_{t} \right| y_{2:t}, X_{1} = x_{1} \right) - p\left(x_{t} \right| y_{2:t}, X_{1} = x_{1}' \right) \right| dx_{t} \leq \alpha^{t} \text{ for } 0 \leq \alpha < 1.$$

• Marginal distribution. For $\varphi_t(x_{1:t}) = \varphi(x_{t-L:t})$, there exists B_1 , $B_2 < \infty$ s.t.

$$\mathbb{E}\left[\left|\widehat{\varphi}_{t}-\overline{\varphi}_{t}\right|^{p}\right]^{1/p} \leq \frac{B_{1} c\left(p\right) \|\varphi\|_{\infty}}{\sqrt{N}},\\ \lim_{N\to\infty} \sqrt{N}\left(\widehat{\varphi}_{t}-\overline{\varphi}_{t}\right) \Rightarrow \mathcal{N}\left(0,\sigma_{t}^{2}\right) \text{ where } \sigma_{t}^{2} \leq B_{2},$$

- i.e. there is no accumulation of numerical errors over time.
- L1 distance. If $\overline{p}(x_{1:t}|y_{1:t}) = \mathbb{E}(\widehat{p}(x_{1:t}|y_{1:t}))$, there exists $B_3 < \infty$ s.t.

$$\int |\overline{p}(x_{1:t}|y_{1:t}) - p(x_{1:t}|y_{1:t})| dx_{1:t} \leq \frac{B_3 t}{N};$$

i.e. the bias only increases in t.

Feb. 2015

25 / 126

27 / 126

Some Convergence Results for SMC

- Numerous convergence results for SMC are available; see Del Moral (2004,2013).
- Let $\varphi_t: \mathcal{X}^t \to \mathbb{R}$ and consider

$$\overline{\varphi}_{t} = \int \varphi_{t} (x_{1:t}) p(x_{1:t} | y_{1:t}) dx_{1:t},$$
$$\widehat{\varphi}_{t} = \int \varphi_{t} (x_{1:t}) \widehat{p} (x_{1:t} | y_{1:t}) dx_{1:t} = \frac{1}{N} \sum_{i=1}^{N} \varphi_{t} \left(X_{1:t}^{(i)} \right)$$

ullet We can prove that for any bounded function φ and any $p\geq 1$

$$\mathbb{E}\left[\left|\widehat{\varphi}_{t}-\overline{\varphi}_{t}\right|^{p}\right]^{1/p} \leq \frac{B\left(t\right)c\left(p\right)\left\|\varphi\right\|_{\infty}}{\sqrt{N}},\\ \lim_{t\to\infty}\sqrt{N}\left(\widehat{\varphi}_{t}-\overline{\varphi}_{t}\right) \Rightarrow \mathcal{N}\left(0,\sigma_{t}^{2}\right).$$

• Very weak results: B(t) and σ_t^2 can increase with t and will for a path-dependent $\varphi_t(x_{1:t})$ as the degeneracy problem suggests.

• Unbiasedness. The marginal likelihood estimate is unbiased

$$\mathbb{E}\left(\widehat{p}\left(y_{1:t}\right)\right)=p\left(y_{1:t}\right).$$

• Central Limit Theorem. There exists $B_5 < \infty$ s.t.

 $\lim_{N \to \infty} \sqrt{N} \log \widehat{p}(y_{1:t}) / p(y_{1:t}) \Rightarrow \mathcal{N}(0, \overline{\sigma}_t^2) \text{ with } \overline{\sigma}_t^2 \leq B_5 t.$

• Relative Variance Bound. Under exponential stability assumptions, there exists $B_4 < \infty$

$$\mathbb{E}\left(\left(\frac{\widehat{p}\left(y_{1:t}\right)}{p\left(y_{1:t}\right)}-1\right)^{2}\right) \leq \frac{B_{4} t}{N}$$

• Another Central Limit Theorem. Under exponential stability assumptions, for $N = \alpha^{-1} T$

$$\lim_{T \to \infty} \log \widehat{p}(y_{1:t}) / p(y_{1:t}) \Rightarrow \mathcal{N}\left(-\frac{\alpha^2}{2}\sigma^2, \alpha^2\sigma^2\right)$$

- SMC provide consistent estimates under weak assumptions.
- Under stability assumptions, uniform in time stability of the SMC estimates of $\{p(x_t | y_{1:t})\}_{t>1}$.
- Under stability assumptions, relative variance of the SMC estimate of $\{p(y_{1:t})\}_{t>1}$ only increases linearly with t.
- Even under stability assumptions, one cannot expect to obtain uniform in time stability for SMC estimates of $\{p(x_{1:t}|y_{1:t})\}_{t>1}$; this is due to the degeneracy problem.
- Is it possible to Q1: eliminate, Q2: mitigate the degeneracy problem?
- Answer: Q1: no, Q2: yes.

Is Resampling Really Necessary?

- Resampling is the source of the degeneracy problem and might appear wasteful.
- The resampling step is an unbiased operation

$$\mathbb{E}\left[\widehat{p}\left(\left.x_{1:t}\right|\right.y_{1:t}\right)|\,\widetilde{p}\left(\left.x_{1:t}\right|\right.y_{1:t}\right)\right]=\widetilde{p}\left(\left.x_{1:t}\right|\right.y_{1:t}\right)$$

but clearly it introduces some errors "locally" in time. That is for any test function. we have

$$\mathbb{V}\left[\int \varphi\left(x_{1:t}\right)\widehat{p}\left(x_{1:t}\right|y_{1:t}\right)dx_{1:t}\right] \geq \mathbb{V}\left[\int \varphi\left(x_{1:t}\right)\widetilde{p}\left(x_{1:t}\right|y_{1:t}\right)dx_{1:t}\right]$$

Sequential Monte Carlo Methodsfor Bayesian

• What about eliminating the resampling step?

A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Feb. 2015 Sequential Importance Samping: SMC Without Resampling

• In this case, the estimate of the posterior is

$$\widehat{p}_{\mathsf{SIS}}(x_{1:t} | y_{1:t}) = \sum_{i=1}^{N} W_t^{(i)} \delta_{X_{1:t}^{(i)}}(x_{1:t})$$

where $X_{1:t}^{(i)} \sim p(x_{1:t})$ and

$$W_t^{(i)} \propto p\left(y_{1:t} | X_{1:t}^{(i)}\right) = \prod_{k=1}^t g\left(y_k | X_t^{(i)}\right).$$

• In this case, the marginal likelihood estimate is

$$\widehat{p}_{\text{SIS}}(y_{1:t}) = \frac{1}{N} \sum_{i=1}^{N} p\left(y_{1:t} | X_{1:t}^{(i)}\right)$$

• Relative variance of $p\left(y_{1:t} | X_{1:t}^{(i)}\right) = \prod_{k=1}^{t} g\left(y_k | X_t^{(i)}\right)$ is increasing exponentially fast...

A. Doucet ()

Sequential Monte Carlo Methodsfor Bayesian

SIS For Stochastic Volatility Model

A. Doucet ()

Figure: Histograms of $\log_{10} (W_t^{(\prime)})$ for t = 1 (top), t = 50 (middle) and t = 100 (bottom).

• The algorithm performance collapse as t increases as expected.

Feb. 2015

Central Limit Theorems

• For both SIS and SMC, we have a CLT for the estimates of the marginal likelihood

$$\begin{split} \sqrt{N} \left(\frac{\widehat{p}_{\mathsf{SIS}}\left(y_{1:t}\right)}{p\left(y_{1:t}\right)} - 1 \right) \Rightarrow \mathcal{N}\left(0, \sigma_{t,\mathsf{SIS}}^{2}\right), \\ \sqrt{N} \left(\frac{\widehat{p}_{\mathsf{SMC}}\left(y_{1:t}\right)}{p\left(y_{1:t}\right)} - 1 \right) \Rightarrow \mathcal{N}\left(0, \sigma_{t,\mathsf{SMC}}^{2}\right). \end{split}$$

• The variance expressions are

$$\begin{split} \sigma_{t,\text{SIS}}^2 &= \int \frac{p^2(x_{1:t}|y_{1:t})}{p(x_{1:t})} dx_{1:t} - 1 = \frac{\int p^2(y_{1:t}|x_{1:t})p(x_{1:t})dx_{1:t}}{p^2(y_{1:t})} - 1 \\ \sigma_{t,\text{SMC}}^2 &= \int \frac{p^2(x_1|y_{1:t})}{\mu(x_1)} dx_1 + \sum_{k=2}^t \int \frac{p^2(x_{1:k}|y_{1:t})}{p(x_{1:k-1}|y_{1:k-1})f(x_k|x_{k-1})} dx_{1:k} - t \\ &= \frac{\int g^2(y_1|x_1)\mu(x_1)dx_1}{p^2(y_1)} + \sum_{k=2}^t \frac{\int p^2(y_{k:t}|x_k)p(x_k|y_{1:k-1})dx_k}{p^2(y_{k:t}|y_{1:k-1})} - t \end{split}$$

• SMC "breaks" the integral over \mathcal{X}^t into t integrals over \mathcal{X} .

A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Better Resampling Schemes

- Better resampling steps can be designed such that $\mathbb{E}\left[N_t^{(i)}\right] = NW_t^{(i)}$ but $\mathbb{V}\left[N_t^{(i)}\right] < NW_t^{(i)}\left(1 - W_t^{(i)}\right)$; residual resampling, minimal entropy resampling etc. (Cappé et al., 2005).
- Residual Resampling. Set $\widetilde{N}_{t}^{(i)} = \lfloor NW_{t}^{(i)} \rfloor$, sample $\overline{N}_{t}^{1:N}$ from a multinomial of parameters $\left(N, \overline{W}_{t}^{(1:N)}\right)$ where $\overline{W}_{t}^{(i)} \propto W_{t}^{(i)} N^{-1}\widetilde{N}_{t}^{(i)}$ then set $N_{t}^{(i)} = \widetilde{N}_{t}^{(i)} + \overline{N}_{t}^{(i)}$.
- Systematic Resampling. Sample $U_1 \sim \mathcal{U}\left[0, \frac{1}{N}\right]$ and define $U_i = U_1 + \frac{i-1}{N}$ for i = 2, ..., N, then set $N_t^i = \left|\left\{U_j: \sum_{k=1}^{i-1} W_t^{(k)} \leq U_j \leq \sum_{k=1}^{i} W_t^{(k)}\right\}\right|$ with the convention $\sum_{k=1}^{0} := 0$.

A Toy Example

- Consider the case where $f(x'|x) = \mu(x') = \mathcal{N}(x'; 0, \sigma^2)$ and $g(y|x) = \mathcal{N}(y; 0, 1 \frac{1}{\sigma^2})$ where $\sigma^2 > 1$.
- Assume we observe $y_1 = \cdots = y_t = 0$ then we have

$$\mathbb{V}\left(\frac{\widehat{p}_{\mathsf{SIS}}(y_{1:t})}{p(y_{1:t})}\right) = \frac{\sigma_{t,\mathsf{SIS}}^2}{N} = \frac{1}{N}\left[\left(\frac{\sigma^4}{2\sigma^2 - 1}\right)^{t/2} - 1\right],$$
$$\mathbb{V}\left(\frac{\widehat{p}_{\mathsf{SMC}}(y_{1:t})}{p(y_{1:t})}\right) \approx \frac{\sigma_{t,\mathsf{SMC}}^2}{N} = \frac{t}{N}\left[\left(\frac{\sigma^4}{2\sigma^2 - 1}\right)^{1/2} - 1\right].$$

- If select $\sigma^2 = 1.2$ then it is necessary to use $N \approx 2 \times 10^{23}$ particles to obtain $\frac{\sigma_{t,\text{SIS}}^2}{N} = 10^{-2}$ for t = 1000.
- To obtain $\frac{\sigma_{t,\text{SMC}}^2}{N} = 10^{-2}$, SMC requires only $N \approx 10^4$ particles: improvement by 19 orders of magnitude!

• To measure the variation of the weights, we can use the Effective Sample Size (ESS)

$$ESS = \left(\sum_{i=1}^{N} \left(W_t^{(i)}\right)^2\right)^{-1}$$

- We have ESS = N if $W_t^{(i)} = 1/N$ for any i and ESS = 1 if $W_t^{(i)} = 1$ and $W_t^{(j)} = 1$ for $j \neq i$.
- Liu (1996) showed that for simple importance sampling for φ "regular enough"

$$\mathbb{V}\left(\sum_{i=1}^{N} W_{t}^{(i)} \varphi\left(X_{t}^{(i)}\right)\right) \approx \mathbb{V}_{p(x_{1:t}|y_{1:t})}\left(\frac{1}{ESS}\sum_{i=1}^{ESS} \varphi\left(X_{t}^{(i)}\right)\right);$$

i.e. the estimate is roughly as accurate as using an iid sample of size *ESS* from $p(x_{1:t}|y_{1:t})$.

Feb. 2015

Dynamic Resampling

- Resampling at each time step can be harmful: only resample when necessary.
- **Dynamic Resampling**: If the variation of the weights as measured by ESS is too high, e.g. ESS < N/2, then resample the particles.
- We can also use the entropy

$$\mathit{Ent} = -\sum_{i=1}^{\mathit{N}} \mathit{W}_t^{(i)} \log_2\left(\mathit{W}_t^{(i)}
ight)$$

• We have $Ent = \log_2(N)$ if $W_t^{(i)} = 1/N$ for any *i*. We have Ent = 0 if $W_t^{(i)} = 1$ and $W_t^{(j)} = 1$ for $j \neq i$.

Improving the Sampling Step

- Bootstrap filter. Sample particles blindly according to the prior without taking into account the observation
 Very inefficient for vague prior/peaky likelihood.
- **Optimal proposal/Perfect adaptation**. Implement the following alternative update-propagate Bayesian recursion

 $\begin{array}{ll} \mathsf{Update} & p\left(\left. x_{1:t-1} \right| \, y_{1:t} \right) = \frac{p(y_t | x_{t-1}) p(x_{1:t-1} | y_{1:t-1})}{p(y_t | y_{1:t-1})} \\ \mathsf{Propagate} & p\left(\left. x_{1:t} \right| \, y_{1:t} \right) = p\left(\left. x_{1:t-1} \right| \, y_{1:t} \right) p\left(\left. x_t \right| \, y_t, x_{t-1} \right) \end{array}$

where

$$p(x_t | y_t, x_{t-1}) = \frac{f(x_t | x_{t-1}) g(y_t | x_{t-1})}{p(y_t | x_{t-1})}$$

$$\stackrel{\rightsquigarrow}{\rightarrow} \text{Much more efficient when applicable; e.g.} \\ f\left(x_t | x_{t-1}\right) = \mathcal{N}\left(x_t; \varphi\left(x_{t-1}\right), \Sigma_v\right), \ g\left(y_t | x_t\right) = \mathcal{N}\left(y_t; x_t, \Sigma_w\right).$$

Sequential Monte Carlo Methodsfor Bayesian

A General Bayesian Recursion

• Introduce an arbitrary proposal distribution $q(x_t | y_t, x_{t-1})$; i.e. an approximation to $p(x_t | y_t, x_{t-1})$.

Sequential Monte Carlo Methodsfor Bayesian

• We have seen that

A. Doucet ()

$$p(x_{1:t}|y_{1:t}) = \frac{g(y_t|x_t) f(x_t|x_{t-1}) p(x_{1:t-1}|y_{1:t-1})}{p(y_t|y_{1:t-1})}$$

so clearly

$$p(x_{1:t}|y_{1:t}) = \frac{w(x_{t-1}, x_t, y_t) q(x_t|y_t, x_{t-1}) p(x_{1:t-1}|y_{1:t-1})}{p(y_t|y_{1:t-1})}$$

where

$$w(x_{t-1}, x_t, y_t) = \frac{g(y_t | x_t) f(x_t | x_{t-1})}{q(x_t | y_t, x_{t-1})}$$

• This suggests a more general SMC algorithm.

A. Doucet ()

Feb. 2015

A. Doucet ()

Feb. 2015

38 / 126

A General SMC Algorithm

A. Doucet ()

Assume we have N weighted particles $\left\{ W_{t-1}^{(i)}, X_{1:t-1}^{(i)} \right\}$ approximating $p\left(x_{1:t-1} \mid y_{1:t-1}\right)$ then at time t, • Sample $\widetilde{X}_{t}^{(i)} \sim q\left(x_{t} \mid y_{t}, X_{t-1}^{(i)}\right)$, set $\widetilde{X}_{1:t}^{(i)} = \left(X_{1:t-1}^{(i)}, \widetilde{X}_{t}^{(i)}\right)$ and $\widetilde{p}\left(x_{1:t} \mid y_{1:t}\right) = \sum_{i=1}^{N} W_{t}^{(i)} \delta_{\widetilde{X}_{1:t}^{(i)}}\left(x_{1:t}\right)$, $W_{t}^{(i)} \propto W_{t-1}^{(i)} \frac{f\left(\widetilde{X}_{t}^{(i)} \mid X_{t-1}^{(i)}\right)g\left(y_{t} \mid \widetilde{X}_{t}^{(i)}\right)}{q\left(\widetilde{X}_{t}^{(i)} \mid y_{t}, X_{t-1}^{(i)}\right)}$.

• If ESS< N/2 resample $X_{1:t}^{(i)} \sim \widetilde{p}(x_{1:t}|y_{1:t})$ and set $W_t^{(i)} \leftarrow \frac{1}{N}$ to obtain $\widehat{p}(x_{1:t}|y_{1:t}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{1:t}^{(i)}}(x_{1:t})$.

Building Proposals

• Our aim is to select $q(x_t | y_t, x_{t-1})$ as "close" as possible to $p(x_t | y_t, x_{t-1})$ as this minimizes the variance of

$$w(x_{t-1}, x_t, y_t) = \frac{g(y_t | x_t) f(x_t | x_{t-1})}{q(x_t | y_t, x_{t-1})}.$$

• Example - EKF proposal: Let

$$X_{t} = \varphi\left(X_{t-1}\right) + V_{t}, \ Y_{t} = \Psi\left(X_{t}\right) + W_{t},$$

with $V_t \sim \mathcal{N}(0, \Sigma_v)$, $W_t \sim \mathcal{N}(0, \Sigma_w)$. We perform local linearization

$$Y_{t} \approx \Psi\left(\varphi\left(X_{t-1}\right)\right) + \left.\frac{\partial \Psi\left(x\right)}{\partial x}\right|_{\varphi\left(X_{t-1}\right)}\left(X_{t} - \varphi\left(X_{t-1}\right)\right) + W_{t}$$

and use as a proposal.

$$q(x_t|y_t, x_{t-1}) \propto \widehat{g}(y_t|x_t) f(x_t|x_{t-1}).$$

• Any standard suboptimal filtering methods can be used: Unscented Particle filter, Gaussan Quadrature particle filter etc.

Sequential Monte Carlo Methodsfor Bayesian Feb. 2015

Block Sampling Proposals

- **Problem**: we only sample X_t at time t so, even if you use $p(x_t | y_t, x_{t-1})$, the SMC estimates could have high variance if $\mathbb{V}_{p(x_{t-1}|y_{1:t-1})} [p(y_t | x_{t-1})]$ is high.
- Block sampling idea: allows yourself to sample again $X_{t-L+1:t-1}$ as well as X_t in light of y_t . Optimally we would like at time t to sample

$$X_{t-L+1:t}^{(i)} \sim p\left(x_{t-L+1:t} | y_{t-L+1:t}, X_{t-L}^{(i)}\right)$$

and

$$W_{t}^{(i)} \propto W_{t-1}^{(i)} \frac{p\left(X_{1:t-L}^{(i)} \middle| y_{1:t-1}\right)}{p\left(X_{1:t-L}^{(i)} \middle| y_{1:t-1}\right) p\left(X_{t-L+1:t}^{(i)} \middle| y_{t-L+1:t}, X_{t-L}^{(i)}\right)} \\ \propto W_{t-1}^{(i)} p\left(y_{t} \middle| y_{t-L+1:t-1}, X_{t-L}^{(i)}\right)$$

When p (x_{t-L+1:t} | y_{t-L+1:t}, x_{t-L}) and p (y_t | y_{t-L+1:t-1}, x_{t-L}) are not available, we can use analytical approximations of them and still have consistent estimates (D., Briers & Senecal, 2006).

41 / 126

Implicit Proposals

• Proposed recently by Chorin (2012). Let

$$F(x_{t-1}, x_t) = \log g(y_t | x_t) + \log f(x_t | x_{t-1})$$

and

$$x_{t}^{*} = \arg \max F(x_{t-1}, x_{t}) = \arg \max p(x_{t}|y_{t}, x_{t-1})$$

• We sample $Z \sim \mathcal{N}(0, I_{n_x})$, then we solve in X_t

$$F(x_{t-1}, x_t^*) - F(x_{t-1}, X_t) = \frac{1}{2}Z^{\mathsf{T}}Z, \quad Z \sim \mathcal{N}(0, I_{n_x})$$

so if there is a unique solution

$$q(x_t | y_t, x_{t-1}) = p_Z(z) |\det \partial z / \partial x_t|$$

$$\propto \frac{\exp\left(-F(x_{t-1}, x_t^*)\right)}{|\det \partial x_t / \partial z|} g(y_t | x_t) f(x_t | x_{t-1})$$

• The incremental weight is

$$\frac{g\left(y_{t} \mid x_{t}\right) f\left(x_{t} \mid x_{t-1}\right)}{q\left(x_{t} \mid y_{t}, x_{t-1}\right)} \propto \left|\det \partial x_{t} / \partial z\right| \exp\left(F\left(x_{t-1}, x_{t}^{*}\right)\right)$$

Sequential Monte Carlo Methodsfor Bayesian

Block Sampling Proposals

A. Doucet ()

- Computational cost is increased from $\mathcal{O}(N)$ to $\mathcal{O}(LN)$ so is it worth it?
- Consider the ideal scenario where

$$\begin{aligned} X_t &= X_{t-1} + V_t \\ Y_t &= X_t + W_t \end{aligned}$$

where $X_{1} \sim \mathcal{N}\left(0,1
ight)$ and $V_{t}, W_{t} \stackrel{\mathrm{i.i.d.}}{\sim} \mathcal{N}\left(0,1
ight)$.

• In this case, we have

 $|p(y_t|y_{t-L+1:t-1}, x_{t-L}) - p(y_t|y_{t-L+1:t-1}, x'_{t-L})| < c|x_{t-L} - x'_{t-L}|/2^L$

where the rate of exponential convergence depends upon the signal-to-noise ratio if more general Gaussian AR are considered.

• We can obtain an analytic expression of the variance of the (normalized) weight.

Feb. 2015

Variance of incremental weight w.r.t. $p(x_{1:t-L}|y_{1:t-1})$.

A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Fighting Degeneracy Using MCMC Steps

- The design of "good" proposals can be complicated and/or time consuming so, after the resampling step, a few particles might inherit many offspring.
- A standard way to limit degeneracy is known as the Resample-Move algorithm (Gilks & Berzuini, 2001); i.e. using MCMC kernels as a principled way to "jitter" the particle locations.
- A MCMC kernel $K_t(x'_{1:t}|x_{1:t})$ of invariant distribution $p(x_{1:t}|y_{1:t})$ is a Markov transition kernel with the property that

$$p(x'_{1:t}|y_{1:t}) = \int p(x_{1:t}|y_{1:t}) K_t(x'_{1:t}|x_{1:t}) dx_{1:t},$$

i.e. if $X_{1:t} \sim p(x_{1:t}|y_{1:t})$ and $X'_{1:t}|X_{1:t} \sim K_t(x'_{1:t}|X_{1:t})$ then marginally $X'_{1:t} \sim p(x_{1:t}|y_{1:t})$.

Block Sampling Proposals

A. Doucet ()

Time averaged variance of of incremental weight w.r.t. $p(x_{1:t-L}|y_{1:t-1})$.

Sequential Monte Carlo Methodsfor Bayesian

Fighting Degeneracy Using MCMC Steps

• Example 1: Gibbs moves. Set $X'_{1:t-L} = X_{1:t-L}$ then sample X'_{t-L+1} from $p(x_{t-L+1}|y_{t-L+1}, x'_{t-L}, x_{t-L+2})$, sample X'_{t-L+2} from $p(x_{t-L+2}|y_{t-L+2}, x'_{t-L+1}, x_{t-L+3})$ and so on until we sample X'_t from $p(x_t|y_t, x'_{t-1})$; that is

$$K_{t}(x_{1:t}'|x_{1:t}) = \delta_{x_{1:t-L}}(x_{1:t-L}') \prod_{k=t-L+1}^{t-1} p(x_{k}'|y_{k}, x_{k-1}', x_{k+1}) \times p(x_{t}'|y_{t}, x_{t-1}')$$

• Example 2: Metropolis-Hastings moves. Set $X'_{1:t-L} = X_{1:t-L}$ then sample X^*_{t-L+1} from $q(x'_{t-L+1:t}|x_{t-L}, x_{t-L+1:t})$ and set $X'_{t-L+1} = X^*_{t-L+1}$ with proba.

$$1 \wedge \frac{p\left(x_{t-L+1:t}^{*} \middle| y_{t-L+1}, x_{t-L}\right)}{p\left(x_{t-L+1:t} \middle| y_{t-L+1}, x_{t-L}\right)} \frac{q\left(x_{t-L+1:t} \middle| x_{t-L}, x_{t-L+1:t}^{*}\right)}{q\left(x_{t-L+1:t}^{*} \middle| x_{t-L}, x_{t-L+1:t}\right)},$$

otherwise set $X'_{t-L+1} = X_{t-L+1}$.

• Contrary to MCMC, we typically do not use ergodic kernels in SMC.

Feb. 2015

45 / 120

Feb. 2015

Example: Bearings-only-tracking

• Target modelled using a standard constant velocity model

$$X_t = AX_{t-1} + V_t$$

where $V_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Sigma)$. The state vector $X_t = \begin{pmatrix} X_t^1 & X_t^2 & X_t^3 & X_t^4 \end{pmatrix}^{\mathsf{T}}$ contains location and velocity components.

• One only receives observations of the bearings of the target

$$Y_t = an^{-1}\left(rac{X_t^3}{X_t^1}
ight) + W_t$$

where $W_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 10^{-4})$; i.e. the observations are almost noiseless.

We compare Bootstrap filter, SMC-EKF with L = 5, 10, MCMC moves L = 5, 10 using dynamic resampling.

A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Feb. 2015 Summary

- SMC provide consistent estimates under weak assumptions.
- We can estimate {p(x_t | y_{1:t})}_{t≥1} satisfactorily but our approximations of {p(x_{1:t} | y_{1:t})}_{t≥1} degenerates as t increases because of resampling steps.
- Resampling is crucial.
- We can mitigate but not eliminate the degeneracy problem by the design of "clever" proposals.
- Smoothing methods to estimate $p(x_{1:T}|y_{1:T})$ can come to the rescue.

Degeneracy for Various Proposals

Figure: Average number of unique particles $X_t^{(i)}$ approximating $p(x_t | y_{1:100})$; time on x-axis, average number of unique particles on y-axis.

A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Feb. 2015 50 / 126 Smoothing in State-Space Models

- **Smoothing problem**: given a fixed time *T*, we are interested in $p(x_{1:T}|y_{1:T})$ or some of its marginals, e.g. $\{p(x_t|y_{1:T})\}_{t=1}^{T}$.
- Smoothing is crucial to parameter estimation.
- Direct SMC approximations of $p(x_{1:T}|y_{1:T})$ and its marginals $p(x_k|y_{1:T})$ are poor if T is large.
- SMC provide "good" approximations of marginals $\{p(x_t | y_{1:t})\}_{t \ge 1}$. This can be used to develop efficient smoothing estimates.
 - \rightsquigarrow Fixed-lag smoothing
 - \rightsquigarrow Forward-backward smoothing
 - \rightsquigarrow (Generalized) two-filter smoothing

Fixed-Lag Smoothing

• The fixed-lag smoothing approximation relies on

 $p(x_t | y_{1:T}) \approx p(x_t | y_{1:T+\Lambda})$ for Δ large enough.

and quantitative bounds can be established under stability assumptions.

- This can be exploited by SMC methods (Kitagawa & Sato, 2001)
- Algorithmically: stop resampling $\left\{X_t^{(i)}
 ight\}$ beyond time $t+\Delta$ (Kitagawa & Sato, 2001).
- Computational cost is $\mathcal{O}(N)$ but non-vanishing bias as $N \to \infty$ (Olsson & al., 2008).
- Picking Δ is difficult: Δ too small results in $p(x_t | y_{1:t+\Delta})$ being a poor approximation of $p(x_t | y_{1:T})$. Δ too large improves the approximation but degeneracy creeps in.

A. Doucet ()

Sequential Monte Carlo Methodsfor Bayesian

Forward Filtering Backward Sampling

- To obtain a sample from $p(x_{1:T} | y_{1:T})$,
 - Forward filtering: compute and store { p (x_t | y_{1:t}) }^T_{t=1}
 Backward sampling: sample X_T ~ p (x_T | y_{1:T}) then for
 - t = T 1, ..., 1 sample $X_t \sim p(x_t | y_{1:t}, X_{t+1})$.
- SMC to obtain an approximate sample from $p(x_{1:T}|y_{1:T})$

 - Forward filtering: compute and store {p̂ (x_t | y_{1:t})}^T_{t=1}.
 Backward sampling: sample X_T ~ p̂ (x_T | y_{1:T}) then for t = T - 1, ..., 1 sample $X_t \sim \widehat{p}(x_t | y_{1:t}, X_{t+1})$ where

$$\hat{\rho}(x_{t}|y_{1:t}, X_{t+1}) \propto f(X_{t+1}|x_{t}) \hat{\rho}(x_{t}|y_{1:t})$$

$$\propto \sum_{i=1}^{N} f(X_{t+1}|X_{t}^{(i)}) \delta_{X_{t}^{(i)}}(x_{t})$$

• Direct implementation $\mathcal{O}(NT)$ (Godsill, D. & West, 2004). Rejection sampling possible if $f(x_{t+1}|x_t) \leq C(x_{t+1})$ (Douc et al., 2011) and $\cot \mathcal{O}(NT)$.

Feb. 2015

53 / 120

Forward Backward Smoothing

Forward Backward (FB) decomposition states

$$p(x_{1:T}|y_{1:T}) = p(x_T|y_{1:T}) \prod_{t=1}^{T-1} p(x_t|y_{1:T}, x_{t+1:T})$$
$$= p(x_T|y_{1:T}) \prod_{t=1}^{T-1} p(x_t|y_{1:t}, x_{t+1})$$

where

A. Doucet ()

$$p(x_t | y_{1:t}, x_{t+1}) = \frac{f(x_{t+1} | x_t) p(x_t | y_{1:t})}{p(x_{t+1} | y_{1:t})}.$$

• Conditioned upon $y_{1:T}$, $\{X_t\}_{t=1}^T$ is a backward Markov chain of initial distribution $p(x_T | y_{1:T})$ and inhomogeneous Markov transitions $\{p(x_t | y_{1:t}, x_{t+1})\}_{t=1}^{T-1}$

Forward Filtering Backward Smoothing

• Assume you want to compute the marginal smoothing distributions $\{p(x_t|y_{1:T})\}_{t=1}^T$ instead of sampling from them.

Sequential Monte Carlo Methodsfor Bayesian

• Forward filtering Backward smoothing (FFBS).

$$\underbrace{f(x_{t}|y_{1:T})}_{\text{p}(x_{t}|y_{1:T})} = \int p(x_{t}, x_{t+1}|y_{1:T}) dx_{t+1} \\ = \int p(x_{t+1}|y_{1:T}) p(x_{t}|y_{1:t}, x_{t+1}) dx_{t+1} \\ = \int \underbrace{f(x_{t+1}|y_{1:T})}_{\text{p}(x_{t+1}|y_{1:T})} \underbrace{\frac{f(x_{t+1}|x_{t}) p(x_{t}|y_{1:t})}{p(x_{t+1}|y_{1:t})}}_{\text{backward transition } p(x_{t}|y_{1:t}, x_{t+1})} dx_{t+1}.$$

• For finite state-space HMM, it is surprisingly and unfortunately not the recursion usually implemented (Rabiner et al., 1989).

Feb. 2015

SMC Forward Filtering Backward Smoothing

- Forward filtering: compute and store $\{\widehat{p}(x_t | y_{1:t})\}_{t=1}^T$ using your favourite SMC.
- Backward smoothing: For t = T 1, ..., 1, we have $\widehat{p}(x_t | y_{1:T}) = \sum_{i=1}^{N} W_{t|T}^{(i)} \delta_{X_{\star}^{(i)}}(x_t)$ with $W_{T|T}^{(i)} = 1/N$ and

$$\widehat{p}(x_{t}|y_{1:T}) = \underbrace{\widehat{p}(x_{t}|y_{1:t})}_{\frac{1}{N}\sum_{i=1}^{N}\delta_{x_{t}^{(i)}}(x_{t})} \int \underbrace{\widehat{p}(x_{t+1}|y_{1:T})}_{\sum_{j=1}^{N}W_{t+1|T}^{(j)}\delta_{x_{t+1}^{(j)}}(x_{t+1})} \frac{f(x_{t+1}|x_{t})}{\int f(x_{t+1}|x_{t})\widehat{p}(x_{t}|y_{1:t})dx_{t}} dx_{t+1}$$

$$= \sum_{i=1}^{N} W_{t|T}^{(i)}\delta_{x_{t}^{(i)}}(x_{t})$$

where

A. Doucet ()

$$W_{t|T}^{(i)} = \sum_{j=1}^{N} W_{t+1|T}^{(j)} \frac{f\left(X_{t+1}^{(j)}|X_{t}^{(j)}
ight)}{\sum_{l=1}^{N} f\left(X_{t+1}^{(j)}|X_{t}^{(l)}
ight)}.$$

Sequential Monte Carlo Methodsfor Bayesian

• Computational complexity is $\mathcal{O}\left(\mathcal{TN}^{2}\right)$.

Generalized Two-Filter Smoothing

• Generalized Two-Filter smoothing (Briers, D. & Maskell, 2004-2010)

where

$$\overline{p}(x_{t+1}|y_{t+1:T}) \propto p(y_{t+1:T}|x_{t+1})\overline{p}(x_{t+1}).$$

• By construction, we now have integrable $\overline{p}(x_{t+1}|y_{t+1:T})$ which we can approximate using a backward SMC algorithm targeting $\{\overline{p}(x_{t+1:T}|y_{t+1:T})\}_{t=T}^{1}$ where

$$\overline{p}(x_{t}|y_{t:T}) \propto \overline{p}(x_{t}) \prod_{k=t+1}^{T} f(x_{k}|x_{k-1}) \prod_{k=t}^{T} g(y_{k}|x_{k}).$$

Feb. 2015

57 / 126

59 / 126

Two-Filter Smoothing

 $\bullet\,$ An alternative to FB smoothing is the Two-Filter (TF) formula

$$p(x_t, x_{t+1} | y_{1:T}) \propto \underbrace{p(x_t | y_{1:t})}_{p(x_t | y_{1:t})} f(x_{t+1} | x_t) \underbrace{p(y_{t+1:T} | x_{t+1})}_{p(y_{t+1:T} | x_{t+1})}$$

• The backward information filter satisfies $p(y_T | x_T) = g(y_T | x_T)$ and

$$p(y_{t:T} | x_t) = \int p(y_t, y_{t+1:T}, x_{t+1} | x_t) dx_{t+1}$$

= $g(y_t | x_t) \int p(y_{t+1:T} | x_{t+1}) f(x_{t+1} | x_t) dx_{t+1}$

• Various particle methods have been proposed to approximate $\{p(y_{t:T}|x_t)\}_{t=1}^{T}$ but rely implicitly on $\int p(y_{t:T}|x_t) dx_t < \infty$ and try to come up with a backward dynamics; e.g. solve

$$X_{t+1} = \varphi\left(X_t, V_{t+1}
ight) \Leftrightarrow X_t = \varphi^{-1}\left(X_t, V_{t+1}
ight).$$

This is incorrect.

- Forward filter: compute and store $\{\hat{p}(x_t | y_{1:t})\}_{t=1}^T$ using your favourite SMC.
- **Backward filter**: compute and store $\{\widehat{\overline{p}}(x_t | y_{t:T})\}_{t=1}^T$ using your favourite SMC.
- Combination step: for any $t \in \{1, ..., T\}$ we have

$$\begin{split} \widehat{p}(x_{t}, x_{t+1} | y_{1:T}) &\propto \widehat{p}(x_{t} | y_{1:T}) \frac{f(x_{t+1} | x_{t})}{\overline{p}(x_{t+1})} \widehat{\overline{p}}(x_{t+1} | y_{t+1:t}) \\ &\propto \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{f(\overline{X}_{t+1}^{(j)} | X_{t}^{(i)})}{\overline{p}(\overline{X}_{t+1}^{(j)})} \delta_{X_{t}^{(i)}, \overline{X}_{t+1}^{(j)}}(x_{t}, x_{t+1}) \,. \end{split}$$

Cost \$\mathcal{O}\$ (\$N^2\$\mathcal{T}\$)\$ but \$\mathcal{O}\$ (\$N\$\mathcal{T}\$)\$ through importance sampling (Briers, D. & Singh, 2005; Fearnhead, Wyncoll & Tawn, 2010) and fast computational methods (Klaas et al., 2005).

Convergence Results

• Exponentially stability assumption. For any x_1 , x'_1

$$\frac{1}{2} \int \left| p\left(x_t | y_{2:t}, X_1 = x_1 \right) - p\left(x_t | y_{2:t}, X_1 = x_1' \right) \right| dx_t \le \alpha^t \text{ for } |\alpha| < 1.$$

- Here $\hat{\varphi}_T$ denotes SMC estimates obtained using direct, fixed-lag FB or TF method.
- Marginal distribution. If $\varphi_T(x_{1:T}) = \varphi(x_t)$, we have for the standard path-based SMC estimate

 $\lim_{N \to \infty} \sqrt{N} \left(\widehat{\varphi}_{T} - \overline{\varphi}_{T} \right) \Rightarrow \mathcal{N} \left(0, \sigma_{T}^{2} \right), \underline{A} \left(T - t + 1 \right) \leq \sigma_{T}^{2} \leq \overline{A} \left(T - t + 1 \right)$

whereas for FB and TF estimates there exists B independent of T s.t.

$$\lim_{N \to \infty} \sqrt{N} \left(\widehat{\varphi}_{T} - \overline{\varphi}_{T} \right) \Rightarrow \mathcal{N} \left(0, \sigma_{T}^{2} \right) \text{ where } \sigma_{T}^{2} \leq B$$

A. Doucet ()

Feb. 2015

61 / 126

63 / 126

Convergence Results for Smoothed Additive Functionals

Sequential Monte Carlo Methodsfor Bayesian

• Consider now the case where $arphi_{\mathcal{T}}\left(x_{1:\mathcal{T}}
ight)=\sum_{t=1}^{\mathcal{T}}arphi\left(x_{t}
ight)$, so that

$$\overline{\varphi}_{T} = \int \varphi_{T} (x_{1:T}) p(x_{1:T} | y_{1:T}) dx_{1:T}$$
$$= \sum_{t=1}^{T} \int \varphi(x_{t}) p(x_{t} | y_{1:T}) dx_{t}$$

- This type of functionals is crucial when performing ML parameter estimation.
- We have for the standard path-based SMC estimate (Poyiadjis, D. & Singh, 2010)

$$\lim_{N\to\infty}\sqrt{N}\left(\widehat{\varphi}_{T}-\overline{\varphi}_{T}\right)\Rightarrow\mathcal{N}\left(\mathbf{0},\sigma_{T}^{2}\right) \text{ where }\underline{A}T^{2}\leq\sigma_{T}^{2}\leq\overline{A}T^{2}.$$

For the FB and TF estimates (Del Moral, D. & Singh, 2009), we have

 $\lim_{N \to \infty} \sqrt{N} \left(\widehat{\varphi}_{T} - \overline{\varphi}_{T} \right) \Rightarrow \mathcal{N} \left(\mathbf{0}, \sigma_{T}^{2} \right) \text{ where } \sigma_{T}^{2} \leq CT$

Comparison Direct Method vs FB and TF

• Assume the model is stable and we are interested in approximating $\overline{\varphi}_{T} = \int \varphi(x_t) p(x_t | y_{1:T}) dx_t$ using SMC.

Method	Fixed-lag	Direct SMC	FB/TF
# particles	Ν	Ν	N
cost	$\mathcal{O}(TN)$	$\mathcal{O}(TN)$	$\mathcal{O}(TN^2), \mathcal{O}(TN)$
Variance	$\mathcal{O}\left(1/N\right)$	$\mathcal{O}\left(\left(T-t+1\right)/N\right)$	$\mathcal{O}(1/N)$
Bias	0	$\mathcal{O}\left(1/N\right)$	$\mathcal{O}\left(1/N\right)$
$MSE=Bias^2+Var$	$\circ^{2}+\mathcal{O}\left(1/N ight)$	$\mathcal{O}\left(\left(T-t+1\right)/N ight)$	$\mathcal{O}\left(1/N\right)$

- FB/TF provide uniformly "good" approximations of $\{p(x_t | y_{1:T})\}_{t=1}^T$ whereas direct method provide only "good" approximation for |T t| "small".
- "Fast" implementations FB and TF of computational complexity $\mathcal{O}(NT)$ outperform other approaches as MSE is $\mathcal{O}(1/N)$ whereas it is $\mathcal{O}((T t + 1) / N)$ for direct SMC.

Sequential Monte Carlo Methodsfor Bayesian

Comparison Direct Method vs FB and TF

• Assume we are interested in approximating $\overline{\varphi}_{T} = \sum_{t=1}^{T} \int \varphi(x_t) p(x_t | y_{1:T}) dx_t$ using SMC.

A. Doucet ()

Method	Fixed-lag	Direct SMC	FB/TF
# particles	Ν	N	N
cost	$\mathcal{O}(TN)$	$\mathcal{O}(TN)$	$\mathcal{O}\left(\mathit{TN}^{2} ight)$, $\mathcal{O}\left(\mathit{TN} ight)$
Var.	$\mathcal{O}(T/N)$	$\mathcal{O}(T^2/N)$	$\mathcal{O}(T/N)$
Bias	To	$\mathcal{O}(T/N)$	$\mathcal{O}(T/N)$
$MSE=Bias^2+Var$	$T^{2}\circ^{2}+\mathcal{O}\left(T/N\right)$	$\mathcal{O}\left(T^{2}/N\right)$	$\mathcal{O}\left(T^2/N^2\right)$

- "Naive" implementations FB and TF have MSE of same order as direct method for fixed computational complexity but MSE is bias dominated for FB/TF whereas it is variance dominated for Direct SMC.
- "Fast" implementations FB and TF of computational complexity $\mathcal{O}(NT)$ outperform other approaches as MSE is $\mathcal{O}(T^2/N^2)$ whereas it is $\mathcal{O}(T^2/N)$ for direct SMC.

Feb. 2015

Experimental Results

• Consider a linear Gaussian model

$$\begin{split} X_t &= 0.8 X_{t-1} + 0.5 V_t, \ V_t \overset{\text{i.i.d.}}{\sim} \mathcal{N}\left(0,1\right) \\ Y_t &= X_t + W_t, \ W_t \overset{\text{i.i.d.}}{\sim} \mathcal{N}\left(0,1\right). \end{split}$$

• We simulate 10,000 observations and compute SMC estimates of

$$\int \varphi_{T}\left(x_{1:T}\right) p\left(x_{1:T}\right| y_{1:T}\right) dx_{1:T}$$

for 4 different additive functionals

 $\begin{aligned} \varphi_t \left(x_{1:t} \right) &= \varphi_{t-1} \left(x_{1:t-1} \right) + \varphi \left(x_{t-1}, x_t, y_t \right) \text{ including} \\ \varphi^1 \left(x_{t-1}, x_t, y_t \right) &= x_{t-1} x_t, \ \varphi^2 \left(x_{t-1}, x_t, y_t \right) = x_t^2. \end{aligned}$ [Ground truth can be computed using Kalman smoother.]

• We use SMC over 100 replications on the same dataset to estimate the empirical variance.

Direct (left) vs FB (right)

Empirical Variance for Direct vs FB

Direct (left) vs FB (right); the vertical scale is different

A. Doucet ()	Sequential Monte Carlo Methodsfor Bayesian	Feb. 2015	66 / 126
Summary			

- SMC smoothing techniques allow us to "solve" the degeneracy problem.
- SMC fixed-lag smoothing is the simplest one but has non-vanishing bias difficult to quantify.
- SMC FB and SMC TF algorithms provide uniformly "good" approximations of marginal smoothing distributions contrary to direct method.
- In terms of MSE, only "fast" implementations of SMC FB/TF provide a gain in terms of MSE.
- For direct implementation SMC FB/TF, MSE is of the same order but SMC FB/TF is bias dominated and direct SMC is variance dominated.

ML Parameter Estimation in State-Space Models

• In most scenarios of interest, the state-space model contains an unknown static parameter $\theta\in\Theta$ so that

$$X_{1}\sim \mu_{ heta}\left(x_{1}
ight)$$
 and $\left.X_{t}
ight|\left(X_{t-1}=x_{t-1}
ight)\sim \mathit{f}_{ heta}\left(\left.x_{t}
ight|x_{t-1}
ight).$

• The observations $\{Y_t\}_{t\geq 1}$ are conditionally independent given $\{X_t\}_{t\geq 1}$ and

$$Y_t|(X_t=x_t)\sim g_\theta(y_t|x_t).$$

• In many applications, we actually only care about θ and would like to estimate it off-line or on-line.

Sequential Monte Carlo Methodsfor Bayesian

A. Doucet ()

Likelihood Function Estimation

• Let $y_{1:T}$ being given, the log-(marginal) likelihood is given by

$$\ell(\theta) = \log p_{\theta}(y_{1:T}).$$

- For any θ ∈ Θ, one can estimate ℓ(θ) using standard SMC. methods, variance O (T/N).
- Direct maximization of $\ell(\theta)$ difficult as SMC estimate $\hat{\ell}(\theta)$ is not a smooth function of θ even for fixed random seed.
- For dim (X_t) = 1, we can obtain smooth estimate of log-likelihood function by using a smoothed resampling step (e.g. Pitt, 2002-2011);
 i.e. piecewise linear approximation of Pr (X_t < x | y_{1:t}).
- For dim (X_t) > 1, we can obtain estimates of ℓ(θ) highly positively correlated for neigbouring values in Θ (e.g. Lee, 2008).

Examples

• Stochastic Volatility model

$$X_{t} = \phi X_{t-1} + \sigma V_{t}, \quad V_{t} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$$
$$Y_{t} = \beta \exp(X_{t}/2) W_{t}, \quad W_{t} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$$

where $heta=\left(\phi,\sigma^2,eta
ight)$.

• Biochemical Network model

$$\begin{array}{l} \Pr\left(X_{t+dt}^{1} = \!\! \mathbf{x}_{t}^{1} \!+\! \mathbf{1}, X_{t+dt}^{2} \!=\!\! \mathbf{x}_{t}^{2} \,\middle|\, \mathbf{x}_{t}^{1}, \mathbf{x}_{t}^{2}\right) = \alpha \, \mathbf{x}_{t}^{1} dt + o\left(dt\right), \\ \Pr\left(X_{t+dt}^{1} \!=\!\! \mathbf{x}_{t}^{1} \!-\! \mathbf{1}, X_{t+dt}^{2} \!=\!\! \mathbf{x}_{t}^{2} \!+\! \mathbf{1} \,\middle|\, \mathbf{x}_{t}^{1}, \mathbf{x}_{t}^{2}\right) = \beta \, \mathbf{x}_{t}^{1} \, \mathbf{x}_{t}^{2} dt + o\left(dt\right), \\ \Pr\left(X_{t+dt}^{1} \!=\!\! \mathbf{x}_{t}^{1}, X_{t+dt}^{2} \!=\!\! \mathbf{x}_{t}^{2} \!-\! \mathbf{1} \,\middle|\, \mathbf{x}_{t}^{1}, \mathbf{x}_{t}^{2}\right) = \gamma \, \mathbf{x}_{t}^{2} dt + o\left(dt\right), \end{array}$$

with

$$Y_k = X_{k \Delta T}^1 + W_k$$
 with $W_k \stackrel{ ext{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma^2
ight)$

where $heta=(lpha,eta,\gamma)$.

A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Feb. 2015 70 / 126 Gradient Ascent

• To maximise $\ell(\theta)$ w.r.t θ , use at iteration k+1

$$\theta_{k+1} = \theta_k + \gamma_k \left. \nabla \ell(\theta) \right|_{\theta = \theta_k}$$

where $\nabla \ell(\theta)|_{\theta=\theta_{k}}$ is the so-called score vector.

• $\nabla \ell(\theta)|_{\theta=\theta_k}$ can be estimated using finite differences but more efficiently using Fisher's identity (e.g. Cappé et al., 2005)

$$\nabla \ell(\theta) = \int \nabla \log p_{\theta}\left(x_{1:T}, y_{1:T}\right) p_{\theta}\left(x_{1:T} \middle| y_{1:T}\right) dx_{1:T}$$

where

$$\begin{aligned} \nabla \log p_{\theta}\left(x_{1:T}, y_{1:T}\right) &= \nabla \log \mu_{\theta}\left(x_{1}\right) \\ &+ \sum_{t=2}^{T} \nabla \log f_{\theta}\left(x_{t} \middle| x_{t-1}\right) + \sum_{t=1}^{T} \nabla \log g_{\theta}\left(y_{t} \middle| x_{t}\right). \end{aligned}$$

• An alternative is to use IPA (Coquelin, Deguest & Munos, 2009).

Feb. 2015

69 / 126

Sequential Monte Carlo Methodsfor Bayesian

Example: SV Model

Remember that

$$X_{t} = \theta X_{t-1} + \sigma V_{t}, \quad V_{t} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$$
$$Y_{t} = \beta \exp(X_{t}/2) W_{t}, \quad W_{t} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$$

where we assume here that (σ^2, β) are known so that $\theta = \phi$.

• In this scenario

$$\log f_{\theta}(x_{t} | x_{t-1}) = -\frac{1}{2} \log (2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}} (x_{t} - \theta x_{t-1})^{2},$$

$$\nabla \log f_{\theta}(x_{t} | x_{t-1}) = \frac{x_{t-1} (x_{t} - \theta x_{t-1})}{\sigma^{2}} = \frac{x_{t-1} x_{t}}{\sigma^{2}} - \frac{\theta x_{t-1}^{2}}{\sigma^{2}},$$

hence

$$\nabla \ell(\theta) = \frac{\mathbb{E}_{\theta}\left(\sum_{t=2}^{T} X_{t-1} X_{t} \middle| y_{1:T}\right)}{\sigma^{2}} - \frac{\theta \mathbb{E}_{\theta}\left(\sum_{t=2}^{T} X_{t-1}^{2} \middle| y_{1:T}\right)}{\sigma^{2}}.$$

A. Doucet ()

Sequential Monte Carlo Methodsfor Bayesian

Feb. 2015

73 / 126

ML Parameter Estimation using EM

- The Expectation-Maximization (EM) algorithm is a celebrated alternative to gradient ascent technique.
- \bullet To maximise $\ell(\theta)$ w.r.t $\theta,$ the EM uses

$$heta_{k+1} = ext{arg max} \; Q(heta_k, heta).$$

where

$$Q(\theta_k, \theta) = \int \log p_{\theta}(x_{1:T}, y_{1:T}) \ p_{\theta_k}(x_{1:T} | y_{1:T}) dx_{1:T}$$

and we know that

$$\ell(\theta_{k+1}) \ge \ell(\theta_k).$$

• If $p_{\theta}(x_{1:T}, y_{1:T})$ is in the exponential family then we have

$$\theta_{k+1} = \Lambda \left(T^{-1} \simeq^{\theta_k}_T \right)$$

where

A. Doucet

$$\simeq_{T}^{\theta} = \int \left(\sum_{t=2}^{T} \varphi\left(x_{t-1}, x_{t}, y_{t}\right)\right) p_{\theta}(x_{1:T} | y_{1:T}) dx_{1:T}$$

• An obvious SMC approximation is given by

$$heta_{k+1} = heta_k + \gamma_k \left. \widehat{
abla \ell} \right|_{ heta = heta}$$

where $\widehat{\nabla \ell(\theta)}\Big|_{\theta=\theta_k}$ is estimated by your favourite SMC smoothing technique.

- As ∇ℓ(θ) is a smoothed additive functional, all previously presented SMC methods and results do apply; see previous numerical results.
- Similarly, it is possible to estimate the observed information matrix -∇²ℓ(θ) using SMC based on Louis identity (e.g. Cappé et al., 2005) to implement a Newton-Raphson algorithm (Poyadjis, D. & Singh, 2010).

Sequential Monte Carlo Methodsfor Bayesian

Example: SV Model

Remember that

A. Doucet ()

$$X_{t} = \theta X_{t-1} + \sigma V_{t}, \quad V_{t} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$$
$$Y_{t} = \beta \exp(X_{t}/2) W_{t}, \quad W_{t} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$$

where we assume here that $\left(\sigma^2, eta
ight)$ are known so that $heta=\phi.$

• In this scenario

L

$$\begin{split} \log f_{\theta} \left(\left. x_{t} \right| x_{t-1} \right) &= -\frac{1}{2} \log \left(2 \pi \sigma^{2} \right) - \frac{1}{2 \sigma^{2}} \left(x_{t} - \theta x_{t-1} \right)^{2} \\ &= -\frac{1}{2} \log \left(2 \pi \sigma^{2} \right) - \frac{x_{t}^{2}}{2 \sigma^{2}} - \frac{\theta^{2} x_{t-1}^{2}}{2 \sigma^{2}} + \frac{\theta x_{t-1} x_{t}}{\sigma^{2}} \end{split}$$

so that

$$\theta_{k+1} = \frac{\mathbb{E}_{\theta_k} \left(\sum_{t=2}^{T} X_{t-1} X_t \middle| y_{1:T} \right)}{\mathbb{E}_{\theta_k} \left(\sum_{t=2}^{T} X_{t-1}^2 \middle| y_{1:T} \right)}$$

Sequential Monte Carlo Methodsfor Bayesian

ayesian Feb. 2015

Feb. 2015

- SMC approximation of the EM is direct.
- As EM requires computing smoothed additive functionals $\simeq_{\mathcal{T}}^{\theta} = \int \left(\sum_{t=2}^{\mathcal{T}} \varphi \left(x_{t-1}, x_t, y_t \right) \right) p_{\theta}(x_{1:\mathcal{T}} | y_{1:\mathcal{T}}) dx_{1:\mathcal{T}}, \text{ all previously}$ presented SMC smoothing methods and results do apply.
- There is obviously no more guarantee that ℓ(θ_{k+1}) ≥ ℓ(θ_k) for finite N but many positive experimental results; e.g. (Schon, Wills & Ninness, 2011).

ML Parameter Estimation using Online Gradient

- In many applications, we would like to estimate the parameter on-line.
- *Recursive maximum likelihood* (Titterington, 1984; LeGland & Mevel, 1997) proceeds as follows

$$\theta_{t+1} = \theta_t + \gamma_t \, \nabla \log \, p_{\theta_{1:t}} \left(\left. y_t \right| y_{1:t-1}
ight)$$

where $p_{\theta_{1:t}}(y_t | y_{1:t-1})$ is computed using θ_k at time k and $\sum_t \gamma_t = \infty$, $\sum_t \gamma_t^2 < \infty$. Under regularity conditions, this converges towards a local maximum of the (average) log-likelihood.

Note that

A. Doucet (

$$abla \log p_{\theta_{1:t}}(y_t | y_{1:t-1}) = \nabla \log p_{\theta_{1:t}}(y_{1:t}) - \nabla \log p_{\theta_{1:t-1}}(y_{1:t-1})$$

is given by the difference of two pseudo-score vectors where

Sequential Monte Carlo Methodsfor Bayesian

$$\begin{aligned} \nabla \log \ p_{\theta_{1:t}}\left(y_{1:t}\right) &:= \int \left(\sum_{k=2}^{t} \nabla \log f_{\theta}\left(x_{k} \mid x_{k-1}\right)\right)_{\theta_{k}} \\ &+ \nabla \log g_{\theta}\left(y_{k} \mid x_{k}\right)\right)_{\theta_{k}} \right) p_{\theta_{1:t}}\left(x_{1:t} \mid y_{1:t}\right) dx_{1:t} \end{aligned}$$

Variance of the Gradient Estimate for Direct vs FB

Figure: Empirical variance of the gradient estimate for standard versus FB approximations (SV model)

ML Parameter Estimation using SMC Online Gradient

Sequential Monte Carlo Methodsfor Bayesian

• SMC approximation follows

$$\theta_{t+1} = \theta_t + \gamma_t \ \widehat{
abla \log p_{\theta_{1:t}}} \left(\left. y_t \right| y_{1:t-1} \right)$$

where

A. Doucet ()

$$\widehat{\nabla \log p_{\theta_{1:t}}}(y_t | y_{1:t-1}) = \widehat{\nabla \log p_{\theta_{1:t}}}(y_{1:t}) - \widehat{\nabla \log p_{\theta_{1:t-1}}}(y_{1:t-1})$$

is given by the difference of SMC estimates of pseudo-score vectors (Poyadjis, D. & Singh, 2011).

- Asymptotic variance of $\nabla \log p_{\theta_{1:t}}(y_t | y_{1:t-1})$ is uniformly bounded for FB estimate (Del Moral, D. & Singh, 2011) whereas it increases linearly with t for direct SMC method.
- Major Problem: If we use FB, this is not an online algorithm anymore as it requires a backward pass of order O(t) to approximate ∇ log p_{θ1:t} (y_{1:t})...

Feb. 2015

77 / 126

Feb. 2015

Online SMC ML Estimation using Direct Approximation

Figure: N = 10,000 particles, online parameter estimates for SV model.

A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Forward only Smoothing

- For the time being, we do not have an online implementation as a backward pass of length t is required at time t.
- It is possible to completely bypass the backward pass to compute using FB

$$\simeq_{t}^{\theta} = \int_{t} \simeq_{t} (x_{1:t}) \ p_{\theta} (x_{1:t} | y_{1:t}) \ dx_{1:t}$$

where

$$\simeq_t (x_{1:t}) = \sum_{k=1}^t \simeq (x_{k-1:k}, y_k)$$

using a dynamic programming trick for the "backward" Markov chain of transition densities $\{p_{\theta}(x_k | y_{1:k}, x_{k+1})\}$.

• Let us introduce the "value" function

$$V_t^{\theta}(x_t) := \int \simeq_t (x_{1:t}) p_{\theta}(x_{1:t-1}|y_{1:t-1}, x_t) dx_{1:t-1}$$

then

$$\simeq_{t}^{\theta} = \int V_{t}^{\theta}\left(x_{t}\right) p_{\theta}\left(x_{t}\right| y_{1:t}) dx_{t}.$$

Sequential Monte Carlo Methodsfor Bayesian Feb.

Feb. 2015

SMC ML Estimation for SV Model using FB

Figure: N = 50 particles, online parameter estimates for SV model.

A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Feb. 2015 82 / 126 Forward only Smoothing

• Forward smoothing recursion

$$V_{t}^{\theta}(x_{t}) = \int \left[V_{t-1}^{\theta}(x_{t-1}) + \simeq (x_{t-1:t}, y_{t}) \right] p_{\theta}(x_{t-1}|y_{1:t-1}, x_{t}) \, dx_{t-1}$$

• Proof is trivial

$$V_{t}^{\theta}(x_{t}) = \int \varphi_{t}(x_{1:t}) p_{\theta}(x_{1:t-1}|y_{1:t-1}, x_{t}) dx_{1:t-1}$$

$$= \int [\varphi_{t-1}(x_{1:t-1}) + \simeq (x_{t-1:t}, y_{t})] p_{\theta}(x_{1:t-2}|y_{1:t-2}, x_{t-1}) \times p_{\theta}(x_{t-1}|y_{1:t-1}, x_{t}) dx_{1:t-1}$$

$$= \int (\underbrace{\int \varphi_{t-1}(x_{1:t-1}) p_{\theta}(x_{1:t-2}|y_{1:t-2}, x_{t-1}) dx_{1:t-2}}_{V_{t-1}^{\theta}(x_{t-1})} + \simeq (x_{t-1:t}, y_{t})) p_{\theta}(x_{t-1}|y_{1:t-1}, x_{t}) dx_{t-1}$$

 Appears implicitly in Elliott, Aggoun & Moore (1996), Ford (1998) and rediscovered a few times... Presentation follows here (Del Moral, D. & Singh, 2009).

- At time t-1, we have $\widehat{p}_{\theta}(x_{t-1}|y_{1:t-1}) = \frac{1}{N}\sum_{i=1}^{N} \delta_{X_{t-1}^{(i)}}(x_{t-1})$ and $\left\{\widehat{V}_{t-1}^{\theta}\left(X_{t-1}^{(i)}\right)\right\}_{1 \leq i \leq N}$.
- At time *t*, compute $\widehat{p}_{ heta}(x_t|y_{1:t}) = \sum_{i=1}^N W_t^{(i)} \delta_{X_t^{(i)}}(x_t)$ and set

$$\begin{split} \widehat{V}_{t}^{\theta}\left(X_{t}^{(i)}\right) &= \int \left[\widehat{V}_{t-1}^{\theta}\left(x_{t-1}\right) + \simeq \left(x_{t-1:t}, y_{t}\right)\right] \widehat{p}_{\theta}\left(x_{t-1} \mid y_{1:t-1}, X_{t}^{(i)}\right) dx_{t-1} \\ &= \frac{\sum_{j=1}^{N} f_{\theta}\left(X_{t}^{(i)} \mid X_{t-1}^{(j)}\right) \left[\widehat{V}_{t-1}^{\theta}\left(X_{t-1}^{(j)}\right) + \simeq \left(X_{t-1}^{(j)}, X_{t}^{(i)}, y_{t}\right)\right]}{\sum_{j=1}^{N} f_{\theta}\left(X_{t}^{(i)} \mid X_{t-1}^{(j)}\right)}, \\ \widehat{\simeq}_{t}^{\theta} &= \frac{1}{N} \sum_{i=1}^{N} \widehat{V}_{t}^{\theta}\left(X_{t}^{(i)}\right). \end{split}$$

- This estimate is exactly the same as the SMC FB estimate, computational complexity $\mathcal{O}(N^2)$.
- A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Feb. 2015 Online ML Parameter Estimation through EM
 - Batch EM uses

$$\begin{split} &\simeq_{T}^{\theta_{k}} = \int \left(\sum_{t=2}^{T} \varphi\left(x_{t-1:t}, y_{t}\right)\right) p_{\theta_{k}}(x_{1:T}|y_{1:T}) dx_{1:T}, \\ &\theta_{k+1} = \Lambda\left(T^{-1} \simeq_{T}^{\theta_{k}}\right) \end{split}$$

• Online EM uses

$$\simeq_{t+1}^{\theta_{1:t}} = \gamma_{t+1} \int \varphi \left(x_{t:t+1}, y_{t+1} \right) p_{\theta_{1:t}} (x_t, x_{t+1} | y_{1:t+1}) dx_{t:t+1}$$

$$+ (1 - \gamma_{t+1}) \sum_{k=1}^{t} \left(\prod_{l=k+2}^{t} (1 - \gamma_l) \right) \gamma_{k+1}$$

$$\times \int \varphi \left(x_{k-1:k}, y_k \right) p_{\theta_{1:t}} (x_{k-1}, x_k | y_{1:t+1}) dx_{k-1:k}$$

$$= \sum_{k=1}^{t} \left(e^{\theta_{1:t}} \right) \int \varphi \left(x_{k-1:k} - y_{k} \right) p_{\theta_{1:t}} (x_{k-1}, x_k | y_{1:t+1}) dx_{k-1:k}$$

then set $\theta_{t+1} = \Lambda\left(\simeq_{t+1}^{\theta_{1:t}}\right)$ for $\{\gamma_t\}_{t\geq 1}$ satisfying $\sum_t \gamma_t = \infty$ and $\sum_t \gamma_t^2 < \infty$; e.g. $\gamma_t = t^{-\alpha}$ with $0.5 < \alpha \leq 1$.

• Under regularity conditions, this converges towards a local maximum of the (average) log-likelihood (well not yet proven for HMM)

85 / 126

ML Parameter Estimation using SMC Online Gradient

- At time t 1, we have $\widehat{p}_{\theta_{1:t-1}}(x_{t-1}|y_{1:t-1})$, $\left\{\widehat{V}_{t-1}^{\theta_{1:t-1}}(X_{t-1}^{(i)})\right\}$ and $\widehat{\nabla \log p}_{\theta_{1:t-1}}(y_{1:t-1}) = \int \widehat{V}_{t-1}^{\theta_{1:t-1}}(x_{t-1}) \widehat{p}_{\theta_{1:t-1}}(x_{t-1}|y_{1:t-1}) dx_{t-1}$ and obtained θ_t .
- At time *t*, use SMC to compute $\widehat{p}_{\theta_{1:t}}(x_t | y_{1:t})$ and

$$\begin{aligned} \widehat{V}_{t}^{\theta_{1:t}}\left(X_{t}^{(i)}\right) &= \int \left[\widehat{V}_{t-1}^{\theta_{1:t-1}}\left(x_{t-1}\right) + \simeq \left(x_{t-1:t}, y_{t}\right)\right] \widehat{p}_{\theta_{1:t}}\left(x_{t-1} \mid y_{1:t-1}, X_{t}^{(i)}\right) dx_{t-1} \\ &\simeq \left(x_{t-1:t}, y_{t}\right) = \nabla \log f_{\theta}\left(x_{t} \mid x_{t-1}\right)|_{\theta_{t}} + \nabla \log g_{\theta}\left(y_{t} \mid x_{t}\right)|_{\theta_{t}} \end{aligned}$$

and

$$\widehat{\nabla \log p_{\theta_{1:t}}}\left(y_{1:t}\right) = \int \widehat{V}_{t}^{\theta_{1:t}}\left(x_{t}\right) \widehat{p}_{\theta_{1:t}}\left(x_{t}\right| y_{1:t}\right) dx_{t}$$

• Parameter update

A. Doucet ()

$$\theta_{t+1} = \theta_t + \gamma_t \left(\widehat{\nabla \log p_{\theta_{1:t}}} \left(y_{1:t} \right) - \widehat{\nabla \log p_{\theta_{1:t-1}}} \left(y_{1:t-1} \right) \right)$$

Online ML Parameter Estimation through SMC EM

• At time t - 1, we have $\hat{p}_{\theta_{1:t-1}}(x_{t-1}|y_{1:t-1}), \left\{\widehat{V}_{t-1}^{\theta_{1:t-1}}(X_{t-1}^{(i)})\right\}$ and obtained θ_t .

Sequential Monte Carlo Methodsfor Bayesian

• At time *t*, use SMC to compute $\widehat{p}_{\theta_{1:t}}(x_{t-1}|y_{1:t-1})$ and

$$\begin{split} \widehat{V}_{t}^{\theta_{1:t}}\left(X_{t}^{(i)}\right) &= \int \left[\left(1 - \gamma_{t}\right) \widehat{V}_{t-1}^{\theta_{1:t-1}}\left(x_{t-1}\right) + \gamma_{t} \simeq \left(x_{t-1:t}, y_{t}\right) \right] \\ &\times \widehat{p}_{\theta_{1:t}}\left(x_{t-1} \mid y_{1:t-1}, X_{t}^{(i)}\right) dx_{t-1}, \\ &\simeq_{t}^{\theta_{1:t}} = \int \widehat{V}_{t}^{\theta_{1:t}}\left(x_{t}\right) \widehat{p}_{\theta_{1:t}}\left(x_{t} \mid y_{1:t}\right) dx_{t} \end{split}$$

• Parameter update

A. Doucet (

Sequential Monte Carlo Methodsfor Bayesian

Feb. 2015

Application to SV Model

Figure: Online EM algorithm with N = 200 initialized at $(\phi, \sigma^2, \beta^2) = (0.1, 1, 2)$; the true values are $(\phi, \sigma^2, \beta^2) = (0.8, 0.1, 1)$.

Sequential Monte Carlo Methodsfor Bayesian

Experimental Comparisons of Direct vs Forward Smoothing for online EM

Figure: Parameter estimates for online EM obtained over 50 runs compared to ground truth: direct (left) vs forward smoothing (right).

A. Doucet ()

Feb. 2015

91 / 126

Direct SMC vs Forward Smoothing for Online EM

- For online gradient techniques, forward smoothing is stable contrary to the direct method.
- Structure of online EM is significantly different.
- We have seen previously that the MSE for smoothed additive functionals is of the same order for direct and FB estimates.
- Direct method is variance dominated, FB is bias dominated.
- We compare experimentally both methods on a simple linear Gaussian model over 100 runs.

Summary

A. Doucet ()

A. Doucet (

• SMC smoothing techniques can be used to perform off-line and on-line ML parameter estimation.

Sequential Monte Carlo Methodsfor Bayesiar

- FB estimates for smoothed additive functionals can be computed using a forward only procedure.
- Forward smoothing allows us to implement a degeneracy free on-line gradient ascent algorithm.
- For on-line EM, forward smoothing and direct methods have both pros and cons with no clear winner.
- Bias reduction approaches are currently under study.

Feb. 2015

Bayesian Parameter Inference in State-Space Models

Assume we have

$$egin{aligned} X_t ert \left(X_{t-1} = x_{t-1}
ight) &\sim f_ heta \left(x_t ert x_{t-1}
ight), \ Y_t ert \left(X_t = x_t
ight) &\sim g_ heta \left(y_t ert x_t
ight), \end{aligned}$$

where θ is an *unknown* static parameter with prior $p(\theta)$.

• Given data $y_{1:t}$, inference relies on

$$p(\theta, x_{1:t}|y_{1:t}) = p(\theta|y_{1:t}) p_{\theta}(x_{1:t}|y_{1:t})$$

where

A. Doucet ()

$$p(\theta|y_{1:t}) \propto p_{\theta}(y_{1:t}) p(\theta)$$
.

• SMC methods apply as it is a standard model with extended state $Z_t = (X_t, \theta_t)$ where

Sequential Monte Carlo Methodsfor Bayesian

$$f\left(\left.z_{t}\right|z_{t-1}\right) = \underbrace{\delta_{\theta_{t-1}}\left(\theta_{t}\right)}_{\text{practical problems}} f_{\theta_{t}}\left(\left.x_{t}\right|x_{t-1}\right), \ g\left(\left.y_{t}\right|z_{t}\right) = g_{\theta_{t}}\left(\left.y_{t}\right|x_{t}\right)$$

SMC with MCMC Step for Parameter Estimation

• Given at time t - 1, the approximation

$$\widehat{p}(\theta, x_{1:t-1}|y_{1:t-1}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\left(\theta_{t-1}^{(i)}, X_{1:t-1}^{(i)}\right)}(\theta, x_{1:t-1}),$$

we update the approximation as follows at time t.

• Sample
$$\widetilde{X}_{t}^{(i)} \sim f_{\theta_{t-1}^{(i)}} \left(\cdot | X_{t-1}^{(i)} \right)$$
, set $\widetilde{X}_{1:t}^{(i)} = \left(X_{1:t-1}^{(i)}, \widetilde{X}_{t}^{(i)} \right)$ and
 $\widetilde{p} \left(\theta, x_{1:t} | y_{1:t} \right) = \sum_{i=1}^{N} W_{t}^{(i)} \delta_{\left(\theta_{t-1}^{(i)}, \widetilde{X}_{1:t}^{(i)} \right)} \left(\theta, x_{1:t} \right)$,
 $W_{t}^{(i)} \propto g_{\theta_{t-1}^{(i)}} \left(y_{t} | \widetilde{X}_{t}^{(i)} \right)$.

• Resample
$$X_{1:t}^{(i)} \sim \widetilde{p}(x_{1:t}|y_{1:t})$$
 then sample $\theta_t^{(i)} \sim p\left(\theta|y_{1:t}, X_{1:t}^{(i)}\right)$ to obtain $\widehat{p}(\theta, x_{1:t}|y_{1:t}) = \frac{1}{N} \sum_{i=1}^N \delta_{\left(\theta_t^{(i)}, X_{1:t}^{(i)}\right)}(\theta, x_{1:t}).$

Cautionary Warning

- For fixed θ , $\mathbb{V}\left[\widehat{p}_{\theta}\left(y_{1:t}\right)\right]/p_{\theta}^{2}\left(y_{1:t}\right)$ is in $\mathcal{O}\left(t/N\right)$.
- In a Bayesian context, the problem is even more complex as $p(\theta|y_{1:t}) \propto p_{\theta}(y_{1:t}) p(\theta)$ and we have $\theta_t = \theta$ for all t so the latent process does not enjoy mixing properties.
- A seemingly attractive idea consists of using MCMC steps on θ; e.g. (Andrieu, De Freitas & D.,1999; Fearnhead, 2002; Gilks & Berzuini 2001; Storvik, 2002; Carvalho et al., 2010) so as to introduce some "noise" on the θ component of the state.
- When p (θ| y_{1:t}, x_{1:t}) = p (θ| s_t (x_{1:t}, y_{1:t})) where s_t (x_{1:t}, y_{1:t}) is a fixed-dimensional of sufficient statistics, the algorithm is particularly elegant but still implicitly relies on SMC approximation of p (x_{1:t} | y_{1:t}) so degeneracy will creep in.
- As dim (Z_t) = dim (X_t) + dim (θ), such methods are not recommended for high-dimensional θ, especially with vague priors.

• Linear Gaussian state-space model

$$\begin{aligned} X_t &= \theta X_{t-1} + \sigma_V V_t, \ V_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0,1\right) \\ Y_t &= X_t + \sigma_W W_t, \ W_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0,1\right). \end{aligned}$$

• We set $p\left(\theta
ight) \propto \mathbf{1}_{\left(-1,1
ight)} \left(\theta
ight)$ so

$$p\left(\theta \mid y_{1:t}, x_{1:t}\right) \propto \mathcal{N}\left(\theta; m_t, \sigma_t^2\right) \mathbf{1}_{\left(-1, 1\right)}\left(\theta\right)$$

where

$$\sigma_t^2 = S_{2,t}^{-1}$$
, $m_t = S_{2,t}^{-1}S_{1,t}$

$$S_{1,t} = \sum_{k=2}^{t} x_{k-1} x_k, \ S_{2,t} = \sum_{k=2}^{t} x_{k-1}^2$$

Sequential Monte Carlo Methodsfor Bayesian

Feb. 2015

93 / 126

SMC with MCMC Step for Parameter Estimation

• At time $t-1$, $\left(heta_{t-1}^{(i)}, X_{t-1}^{(i)}, S_{t-1}^{(i)} ight)$ we have	
$\widehat{p}(\theta, x_{t-1}, s_{t-1} y_{1:t-1}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\left(\theta_{t-1}^{(i)}, X_{t-1}^{(i)}, S_{t-1}^{(i)}\right)}(\theta, x_{t-1}, s_{t-1})$	$_{-1})$.
• Sample $\widetilde{X}_{t}^{(i)} \sim f_{\theta_{t-1}^{(i)}}\left(\cdot X_{t-1}^{(i)}\right)$, set $\widetilde{S}_{1,t}^{(i)} = S_{1,t-1}^{(i)} + X_{t-1}^{(i)} \widetilde{X}_{t}^{(i)}$,	
$\widetilde{S}_{2,t}^{(i)} = S_{2,t-1}^{(i)} + \left(X_{t-1}^{(i)} ight)^2$, $W_t^{(i)} \propto g_{ heta_{t-1}^{(i)}}\left(y_t \widetilde{X}_t^{(i)} ight)$ and	
$\widetilde{p}(\theta, x_t, s_t y_{1:t}) = \sum_{i=1}^{N} W_t^{(i)} \delta_{\left(\theta_{t-1}^{(i)}, \widetilde{X}_t^{(i)}, \widetilde{S}_t^{(i)}\right)}(\theta, x_t, s_t).$	
• Resample $\left(X_t^{(i)},S_t^{(i)} ight)\sim\widetilde{p}\left(x_t,s_t y_{1:t} ight)$ then sample	
$\theta_t^{(i)} \sim \mathcal{N}\left(heta; \left(S_{2,t}^{(i)} ight)^{-1} S_{1,t}^{(i)}, \left(S_{2,t}^{(i)} ight)^{-1} ight) 1_{(-1,1)}\left(heta ight)$ to obtain	
$\widehat{p}(\theta, x_t, s_t y_{1:t}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\left(\theta_t^{(i)}, X_t^{(i)}, S_t^{(i)}\right)}(\theta, x_t, s_t).$	
A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Feb. 201	L5 9

Another Toy Example

• Linear Gaussian state-space model

$$\begin{split} X_{t} &= \rho X_{t-1} + V_{t}, \ V_{t} \overset{\text{i.i.d.}}{\sim} \mathcal{N}\left(0,1\right) \\ Y_{t} &= X_{t} + \sigma W_{t}, \ W_{t} \overset{\text{i.i.d.}}{\sim} \mathcal{N}\left(0,1\right). \end{split}$$

- We set $\rho \sim \mathcal{U}_{(-1,1)}$ and $\sigma^2 \sim \mathcal{IG}(1,1)$.
- We use particle filter with perfect adaptation and Gibbs moves with N = 10000; particle learning (Andrieu, D. & De Freitas, 1999; Carvalho et al., 2010)
- We compare to the ground truth obtained using Kalman filter on states and grid on parameters.

Illustration of the Degeneracy Problem

A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Feb. 2015 98 / 126 Another Illustration of Degeneracy for Particle Learning

Figure: Estimates of $p(\rho|y_{1:t})$ and $p(\sigma^2|y_{1:t})$ over 50 runs (red) vs ground truth (blue) for $t = 10^3, 2.10^3, ..., 5.10^3$ for $N = 10^4$.

Online Bayesian Parameter Estimation

Offline Bayesian Parameter Estimation

- All proposed procedures for online Bayesian parameter estimation are deficient.
- Some artificial dynamics can be introduced but then we do not approximate {p (θ, x_{1:t} | y_{1:t})}_{t≥1}; e.g. (Liu & West, 2001; Flury & Shephard, 2010).
- Methods based on MCMC steps are elegant but do suffer from the degeneracy problem and provide unreliable approximations.

Sequential Monte Carlo Methodsfor Bayesian

Given a collection of observations y_{1:T} := (y₁, ..., y_T), T being fixed, inference relies on the posterior density

$$p(\theta, x_{1:T} | y_{1:T}) = p(\theta | y_{1:T}) p_{\theta}(x_{1:T} | y_{1:T})$$

$$\propto p(\theta, x_{1:T}, y_{1:T})$$

where

A. Doucet ()

$$p(\theta, x_{1:T}, y_{1:T}) \propto p(\theta) \mu_{\theta}(x_{1}) \prod_{t=2}^{T} f_{\theta}(x_{t} | x_{t-1}) \prod_{t=1}^{T} g_{\theta}(y_{t} | x_{t}) .$$

• We show how to address this problem using particle MCMC (Andrieu, D. & Holenstein, *JRSS* B, 2010).

Common MCMC Approaches and Limitations

- MCMC Idea: Simulate an ergodic Markov chain {θ (i), X_{1:T} (i)}_{i≥0} of invariant distribution p (θ, x_{1:T} | y_{1:T})... infinite number of possibilities.
- Typical strategies consists of updating iteratively X_{1:T} conditional upon θ then θ conditional upon X_{1:T}.
- To update $X_{1:T}$ conditional upon θ , use MCMC kernels updating subblocks according to $p_{\theta}(x_{t:t+K-1}|y_{t:t+K-1}, x_{t-1}, x_{t+K})$.
- Standard MCMC algorithms are inefficient if θ and $X_{1:T}$ are strongly correlated.
- Strategy impossible to implement when it is only possible to sample from the prior but impossible to evaluate it pointwise.

Metropolis-Hastings (MH) Sampling

• To bypass these problems, we want to update jointly θ and $X_{1:T}$.

Sequential Monte Carlo Methodsfor Bayesian

 Assume that the current state of our Markov chain is (θ, x_{1:T}), we propose to update simultaneously the parameter and the states using a proposal

$$q\left(\left(\theta^*, x_{1:T}^*\right) \middle| \left(\theta, x_{1:T}\right)\right) = q\left(\theta^* \middle| \theta\right) \; q_{\theta^*}\left(x_{1:T}^* \middle| y_{1:T}\right).$$

• The proposal $(\theta^*, x_{1:T}^*)$ is accepted with MH acceptance probability

$$1 \wedge \frac{p\left(\theta^{*}, x_{1:T}^{*} \middle| y_{1:T}\right)}{p\left(\theta, x_{1:T} \middle| y_{1:T}\right)} \frac{q\left(\left(x_{1:T}, \theta\right) \middle| \left(x_{1:T}^{*}, \theta^{*}\right)\right)}{q\left(\left(x_{1:T}^{*}, \theta^{*}\right) \middle| \left(x_{1:T}, \theta\right)\right)}$$

Problem: Designing a proposal q_{θ*} (x^{*}_{1:T} | y_{1:T}) such that the acceptance probability is not extremely small is very difficult.

A. Doucet ()

Feb. 2015

Feb. 2015

'Idealized" Marginal MH Sampler

• Consider the following so-called marginal Metropolis-Hastings (MH) algorithm which uses as a proposal

$$q\left(\left(x_{1:\mathcal{T}}^{*},\theta^{*}\right)|\left(x_{1:\mathcal{T}},\theta\right)\right)=q\left(\left.\theta^{*}\right|\theta\right)p_{\theta^{*}}\left(\left.x_{1:\mathcal{T}}^{*}\right|y_{1:\mathcal{T}}\right).$$

• The MH acceptance probability is

$$1 \wedge \frac{p\left(\theta^{*}, x_{1:T}^{*} \mid y_{1:T}\right)}{p\left(\theta, x_{1:T} \mid y_{1:T}\right)} \frac{q\left(\left(x_{1:T}, \theta\right) \mid \left(x_{1:T}^{*}, \theta^{*}\right)\right)}{q\left(\left(x_{1:T}^{*}, \theta^{*}\right) \mid \left(x_{1:T}, \theta\right)\right)} = 1 \wedge \frac{p_{\theta^{*}}\left(y_{1:T}\right) p\left(\theta^{*}\right)}{p_{\theta}\left(y_{1:T}\right) p\left(\theta\right)} \frac{q\left(\theta \mid \theta^{*}\right)}{q\left(\theta^{*} \mid \theta\right)}$$

• In this MH algorithm, $X_{1:T}$ has been essentially integrated out.

Sequential Monte Carlo Methodsfor Bayesian

Implementation Issues

- **Problem 1**: We do not know $p_{\theta}(y_{1:T}) = \int p_{\theta}(x_{1:T}, y_{1:T}) dx_{1:T}$ analytically.
- **Problem 2:** We do not know how to sample from $p_{\theta}(x_{1:T} | y_{1:T})$.
- "Idea": Use SMC approximations of $p_{\theta}(x_{1:T} | y_{1:T})$ and $p_{\theta}(y_{1:T})$.

Sequential Monte Carlo Methodsfor Bayesian

Sequential Monte Carlo aka Particle Filters

- Given θ , SMC methods provide approximations of $p_{\theta}(x_{1:T} | y_{1:T})$ and $p_{\theta}(y_{1:T})$.
- At time *T*, we obtain the following approximation of the posterior of interest

$$\widehat{p}_{\theta}(x_{1:T} | y_{1:T}) = \frac{1}{N} \sum_{k=1}^{N} \delta_{X_{1:T}^{(k)}}(x_{1:T})$$

and an approximation of $p_{\theta}(y_{1:T})$ is given by

$$\widehat{p}_{\theta}\left(y_{1:T}\right) = \widehat{p}_{\theta}\left(y_{1}\right) \prod_{t=2}^{T} \widehat{p}_{\theta}\left(y_{t} | y_{1:t-1}\right) = \prod_{t=1}^{T} \left(\frac{1}{N} \sum_{k=1}^{N} g_{\theta}\left(y_{t} | X_{t}^{(k)}\right)\right)$$

if we use $f_{\theta}(x_t | x_{t-1})$ as a proposal.

Reminder...

A. Doucet ()

• Under *mixing assumptions*, we have

$$\frac{\mathbb{V}\left[\widehat{p}_{\theta}\left(y_{1:T}\right)\right]}{p_{\theta}^{2}\left(y_{1:T}\right)} \leq D_{\theta}\frac{T}{N}.$$

• Under mixing assumptions, we also have

$$\int \left| \mathbb{E} \left[\widehat{p}_{\theta} \left(\left. x_{1:T} \right| y_{1:T} \right) \right] - p_{\theta} \left(\left. x_{1:T} \right| y_{1:T} \right) \right| dx_{1:T} \leq C_{\theta} \frac{T}{N}$$

so if I run an SMC method to obtain $\widehat{p}_{\theta}(x_{1:T} | y_{1:T})$ then $X_{1:T} \sim \widehat{p}_{\theta}(x_{1:T} | y_{1:T})$, unconditionally $X_{1:T} \sim \mathbb{E}[\widehat{p}_{\theta}(\cdot | y_{1:T})]$.

• **Problem**: We cannot compute analytically the particle filter proposal $q_{\theta}(x_{1:T} | y_{1:T}) = \mathbb{E}\left[\hat{p}_{\theta}(x_{1:T} | y_{1:T})\right]$ as it involves an expectation w.r.t all the variables appearing in the particle algorithm...

A. Doucet ()

Feb. 2015

Feb. 2015

<u>At iteration i</u>

- Sample $\theta^* \sim q(\theta | \theta(i-1))$.
- Sample $X_{1:T}^* \sim p_{\theta^*}(x_{1:T} | y_{1:T})$.
- With probability

A. Doucet ()

$$1 \wedge \frac{p_{\theta^{*}}\left(y_{1:\mathcal{T}}\right) p\left(\theta^{*}\right)}{p_{\theta(i-1)}\left(y_{1:\mathcal{T}}\right) p\left(\theta\left(i-1\right)\right)} \frac{q\left(\left.\theta\left(i-1\right)\right| \theta^{*}\right)}{q\left(\left.\theta^{*}\right| \theta\left(i-1\right)\right)}$$

set $\theta(i) = \theta^*$, $X_{1:T}(i) = X_{1:T}^*$ otherwise set $\theta(i) = \theta(i-1)$, $X_{1:T}(i) = X_{1:T}(i-1)$.

Sequential Monte Carlo Methodsfor Bayesian

<u>At iteration i</u>

- Sample $\theta^* \sim q(\theta | \theta(i-1))$ and run an SMC algorithm to obtain $\hat{p}_{\theta^*}(x_{1:T} | y_{1:T})$ and $\hat{p}_{\theta^*}(y_{1:T})$.
- Sample $X_{1:T}^* \sim \widehat{p}_{\theta^*}\left(\left. x_{1:T} \right| y_{1:T} \right)$.
- With probability

$$1 \wedge \frac{\widehat{p}_{\theta^{*}}\left(y_{1:\mathcal{T}}\right) p\left(\theta^{*}\right)}{\widehat{p}_{\theta\left(i-1\right)}\left(y_{1:\mathcal{T}}\right) p\left(\theta\left(i-1\right)\right)} \frac{q\left(\left.\theta\left(i-1\right)\right| \theta^{*}\right)}{q\left(\left.\theta^{*}\right| \theta\left(i-1\right)\right)}$$

set $\theta(i) = \theta^*$, $X_{1:T}(i) = X_{1:T}^*$ otherwise set $\theta(i) = \theta(i-1)$, $X_{1:T}(i) = X_{1:T}(i-1)$.

Sequential Monte Carlo Methodsfor Bayesian

Validity of the Particle Marginal MH Sampler

- **Proposition**. Assume that the 'idealized' marginal MH sampler chain is ergodic then, under very weak assumptions, the PMMH sampler chain is ergodic and admits $p(\theta, x_{1:T} | y_{1:T})$ whatever being $N \ge 1$.
- It is easy to show the simpler result that the PMMH admits $p(\theta|y_{1:T})$ as invariant distribution whatever being $N \ge 1$.
- Let U denote all the r.v. introduce to build the SMC estimate then write $\hat{p}_{\theta}(y_{1:T}) = \hat{p}_{\theta}(y_{1:T}, U)$ and from unbiasedness

$$\int \widehat{p}_{\theta}\left(y_{1:T}, u\right) q_{\theta}\left(u\right) du = p_{\theta}\left(y_{1:T}\right)$$

An Incomplete But Trivial Proof

• The PMMH targets the distribution

$$\widetilde{\pi}(\theta, u) \propto p(\theta) \,\widehat{p}_{\theta}(y_{1:T}, u) \,q_{\theta}(u)$$

which satisfies

A. Doucet ()

- $\widetilde{\pi}(\theta) = p(\theta|y_{1:T}).$
- The PMMH sampler uses as a proposal

$$q\left(\left(\theta^{*}, u^{*}\right) \middle| \left(\theta, u\right)\right) = q\left(\left.\theta^{*} \middle| \right.\theta\right) q_{\theta^{*}}\left(u^{*}\right)$$

and

$$\frac{\tilde{\pi}(\theta^*, u^*)}{\tilde{\pi}(\theta, u)} \frac{q((\theta, u)|(\theta^*, u^*))}{q((\theta^*, u^*)|(\theta, u))} = \frac{p(\theta^*)\hat{p}_{\theta^*}(y_{1:T}, u^*)q_{\theta^*}(u^*)}{p(\theta)\hat{p}_{\theta}(y_{1:T}, u)q_{\theta}(u)} \frac{q(\theta|\theta^*)q_{\theta}(u)}{q(\theta^*|\theta)q_{\theta^*}(u^*)} \\ = \frac{p(\theta^*)\hat{p}_{\theta^*}(y_{1:T}, u^*)}{p(\theta)\hat{p}_{\theta}(y_{1:T}, u)} \frac{q(\theta|\theta^*)}{q(\theta^*|\theta)}$$

• **Trivial but deep result:** if you plug any unbiased likelihood estimate within a MCMC scheme, you do not perturb the invariant distribution.

Feb. 2015

109 / 126

Feb. 2015

Explicit Structure of the Target Distribution

- Let first consider the case where T = 1.
- Proposal distribution

$$\widetilde{q}\left(\left(\theta^{*}, k, x_{1}^{(1:N)}\right) \middle| \theta\right) = q\left(\theta^{*} \middle| \theta\right) \underbrace{\prod_{m=1}^{N} \mu_{\theta^{*}}\left(x_{1}^{(m)}\right) W_{1}^{(k)}}_{q_{\theta^{*}}(u)}$$

• Target distribution

$$\tilde{\pi}\left(\theta, k, x_{1}^{(1:N)}\right) \propto p\left(\theta\right) \underbrace{\frac{1}{N} \sum_{m=1}^{N} g_{\theta}\left(y_{1} \mid x_{1}^{(m)}\right)}_{\widehat{p}_{\theta}(y_{1})} \prod_{m=1}^{N} \mu_{\theta}\left(x_{1}^{(m)}\right) W_{1}^{(k)}}$$

• We have already shown

A. Doucet ()

$$\frac{\tilde{\pi}\left(\theta^{*},k,x_{1}^{\left(1:N\right)}\right)}{\left.\widetilde{q}^{N}\left(\left(\theta^{*},k,x_{1}^{\left(1:N\right)}\right)\right|\theta\right)}=\frac{p\left(\theta^{*}\right)}{q\left(\theta^{*}\right|\theta\right)}\frac{\widehat{p}_{\theta^{*}}\left(y_{1}\right)}{p_{\theta^{*}}\left(y_{1}\right)}$$

Sequential Monte Carlo Methodsfor Bayesian

Sampling from the Target Distribution

Explicit Structure of the Target Distribution

• The target is given by

$$\tilde{\pi}\left(\theta, k, x_{1}^{(1:N)}\right) \propto p\left(\theta\right) \left(\sum_{m=1}^{N} g_{\theta}\left(y_{1} \mid x_{1}^{(m)}\right)\right) \prod_{m=1}^{N} \mu_{\theta}\left(x_{1}^{(m)}\right) W_{1}^{(k)}$$

but
$$W_1^{(k)} = g_{\theta} \left(y_1 | x_1^{(k)} \right) / \left(\sum_{m=1}^{N} g_{\theta} \left(y_1 | x_1^{(m)} \right) \right)$$

• Hence, we can actually rewrite the target as

$$\tilde{\pi}^{N}\left(\theta, k, x_{1}^{(1:N)}\right) = \frac{p\left(\theta, x_{1}^{(k)} \middle| y_{1}\right)}{N} \prod_{m=1; m \neq k}^{N} \mu_{\theta}\left(x_{1}^{(m)}\right).$$

• This shows that we are able to sample from $p(\theta, x_1 | y_1)$ and not only its marginal $p(\theta | y_1)$.

A. Doucet ()	Sequential Monte Carlo Methodsfor Bayesian	Feb. 2015	114 / 126
Explicit Structure	of the Target Distribution		

- This construction can be extended to the case T > 1.
- To sample from this target distribution
 - Sample indexes from a uniform distribution on {1, ..., N}^T corresponding to an ancestral line.
 - Sample θ and $X_{1:T}$ for this ancestral line from $p(\theta, x_{1:T} | y_{1:T})$. (We do not know how to do this, this is why we use MCMC).
- Run a conditional SMC algorithm compatible with X_{1:T} and its ancestral lineage; see (Andrieu, D. & Holenstein, 2010).

- To sample from this target distribution
 - Sample K from a uniform distribution on $\{1, ..., N\}$.
 - Sample $(\theta, X_1^{(K)})$ from $p(\theta, x_1 | y_1)$. (We do not know how to do this, this is why we use MCMC).
- Sample $X_{1}^{\left(m
 ight)}\sim\mu_{ heta}\left(x_{1}
 ight)$ for $m
 eq {\cal K}.$

Feb. 2015

Conditional SMC

Figure: Example of N - 1 = 4 ancestral lineages generated by a conditional SMC algorithm for N = 5, T = 3 conditional upon $X_{1:3}^2$ and $B_{1:3}^2$

Sequential Monte Carlo Methodsfor Bayesian

"Idealized" Gibbs Sampler

 To sample from p (θ, x_{1:T} | y_{1:T}), an MCMC strategy consists of using the following block Gibbs sampler.

<u>At iteration i</u>

- Sample $X_{1:T}(i) \sim p_{\theta(i-1)}(x_{1:T} | y_{1:T})$.
- Sample $\theta(i) \sim p(\theta|y_{1:T}, X_{1:T}(i))$.
- **Problem**: We do not know how to sample from $p_{\theta}(x_{1:T} | y_{1:T})$.
- Naive particle approximation where X_{1:T} (i) ~ p̂ (x_{1:T} |y_{1:T}, θ (i)) is substituted to X_{1:T} (i) ~ p (x_{1:T} |y_{1:T}, θ (i)) is obviously incorrect.

Sequential Monte Carlo Methodsfor Bayesian

Nonlinear State-Space Model

A. Doucet ()

• Consider the following model

$$egin{aligned} X_t &= rac{1}{2} X_{t-1} + 25 rac{X_{t-1}}{1+X_{t-1}^2} + 8\cos 1.2t + V_t, \ Y_t &= rac{X_t^2}{20} + W_t \end{aligned}$$

where $V_t \sim \mathcal{N}\left(0, \sigma_v^2\right)$, $W_t \sim \mathcal{N}\left(0, \sigma_w^2\right)$ and $X_1 \sim \mathcal{N}\left(0, 5^2\right)$.

- Use the prior for $\{X_t\}$ as proposal distribution.
- For a fixed θ , we evaluate the expected acceptance probability as a function of N.

Particle Gibbs Sampler

A. Doucet ()

<u>At iteration i</u>

- Sample $\theta(i) \sim p(\theta|y_{1:T}, X_{1:T}(i-1))$.
- Run a conditional SMC algorithm for $\theta(i)$ consistent with $X_{1:T}$ (i-1) and its ancestral lineage.
- Sample $X_{1:T}(i) \sim \hat{p}(x_{1:T}|y_{1:T}, \theta(i))$ from the resulting approximation (hence its ancestral lineage too).
- Proposition. Assume that the 'ideal' Gibbs sampler chain is ergodic then under very weak assumptions the particle Gibbs sampler chain is ergodic and admits p (θ, x_{1:T} | y_{1:T}) as an invariant distribution for any N ≥ 2.

Feb. 2015

Feb. 2015

Inference for Stochastic Kinetic Models

• Two species X_t^1 (prey) and X_t^2 (predator)

$$\begin{split} &\Pr\left(X_{t+dt}^{1} = x_{t}^{1} + 1, X_{t+dt}^{2} = x_{t}^{2} \left| x_{t}^{1}, x_{t}^{2} \right) = \alpha \, x_{t}^{1} dt + o\left(dt\right), \\ &\Pr\left(X_{t+dt}^{1} = x_{t}^{1} - 1, X_{t+dt}^{2} = x_{t}^{2} + 1 \left| x_{t}^{1}, x_{t}^{2} \right) = \beta \, x_{t}^{1} \, x_{t}^{2} dt + o\left(dt\right), \\ &\Pr\left(X_{t+dt}^{1} = x_{t}^{1}, X_{t+dt}^{2} = x_{t}^{2} - 1 \left| x_{t}^{1}, x_{t}^{2} \right) = \gamma \, x_{t}^{2} dt + o\left(dt\right), \end{split}$$

with

$$Y_k = X_{k\Delta T}^1 + W_k$$
 with $W_k \stackrel{ ext{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma^2
ight)$.

We are interested in the kinetic rate constants θ = (α, β, γ) a priori distributed as (Boys et al., 2008; Kunsch, 2011)

$$\alpha \sim \mathcal{G}(1, 10), \quad \beta \sim \mathcal{G}(1, 0.25), \quad \gamma \sim \mathcal{G}(1, 7.5).$$

• MCMC methods require reversible jumps, Particle MCMC requires only forward simulation.

Experimental Results

Autocorrelation of α (left) and	d eta (right) d	for the	РММН	sampler for	
various <i>N</i> .					

A. Doucet ()	Sequential Monte Carlo Methodsfor Bayesian	Feb. 2015	125

Summary

A. Doucet ()

/ 126

- Offline Bayesian parameter inference is feasible by using SMC proposals within MCMC.
- This approach does not suffer from degeneracy problem and N scales roughly linearly with T.
- Particle MCMC allow us to perform Bayesian inference for dynamic models for which only forward simulation is possible.
- Computationally intensive but several implementations on GPU already available and applications in control, ecology, econometrics, biochemical systems, epidemiology, water resources research etc.
- Selection of *N* is a key issue and some guidelines are available (D., Pitt, Deligiannidis & Kohn, 2014).

Sequential Monte Carlo Methodsfor Bayesian

Feb. 2015 126 / 126