Monte Carlo Methods

Sequential Monte Carlo Methods @ MCMC are the tools of choice in Bayesian computation for over 20
for Bayesian Computation years whereas SMC have been widely used for 15 years in vision and
robotics.

@ Both MCMC and SMC are asymptotically (as you increase
A. Doucet computational efforts) bias-free but computationally expensive.

@ The development of new methodology combined to the emergence of
cheap multicore architectures makes now SMC a powerful
Feb. 2015 alternative/complementary approach to MCMC to address general
Bayesian computational problems.
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Some References and Resources Organization of Lectures

e A.D., J.F.G. De Freitas & N.J. Gordon (editors), Sequential Monte o State-Space Models (approx.3 hours)
Carlo Methods in Practice, Springer-Verlag: New York, 2001. o SMC filtering and smoothing

@ P. Del Moral, Feynman-Kac Formulae: Genealogical and Interacting e Maximum likelihood parameter inference
Particle Systems with Applications, Springer-Verlag: New York, 2004. o Bayesian parameter inference

e Webpage with links to papers and codes: e Beyond State-Space Models (approx. 1 hour)

http://www.stats.ox.ac.uk/~doucet/smc _ resources.html o SMC methods for generic sequence of target distributions

@ Thousands of papers on the subject appear every year. o SMC samplers.
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State-Space Models

o Let {X;},-, be a latent/hidden X-valued Markov process with
X1~ () and Xi| (Xe—1 =x) ~ (-] x).

o Let {Y:},~; be an Y-valued Markov observation process such that
observations are conditionally independent given {X;},~, and

Vil (Xe = x) ~ g (+[x).

@ General class of time series models aka Hidden Markov Models
(HMM) including
Xt - T (thl, Vt) , Yt - q) (Xt, Wt)

where V;, W; are two sequences of i.i.d. random variables.

e Aim: Infer {X;} given observations {Y;} on-line or off-line.

State-Space Models

@ State-space models are ubiquitous in control, data mining,
econometrics, geosciences, system biology etc. Since Jan. 2014, more
than 16,900 papers have already appeared (source: Google Scholar).

o Finite State-space HMM: X is a finite space, i.e. {X;} is a finite
Markov chain

Ye| (Xe = x) ~ g (-] x)
o Linear Gaussian state-space model
X = AXe_1 + BV, Vi K N(0,1)
Y, = CX: + DW,, W, "5 N (0, 1)

@ Switching Linear Gaussian state-space model: X; =
where {th} is a finite Markov chain,

(X2 X?)

X2 =AY XEL+B (X Vi Ve "N (01)
Ye = C(X2) X2+ D (X2) Wi, W, "8 N (0, 1)
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State-Space Models

e Stochastic Volatility model
X; = ¢Xeo1 +0Ve, V<N (0,1)
iid.
Yt = ,Bexp (Xt/2) th Wt ~ N(O, 1)
@ Biochemical Network model
Pr (Xt1+dt—xt+1 Xt2+dt—xt ‘ Xt : X2) = XX Fdt + o (dt),

Pr (Xt1+dt—xt —1, X2, go=xtH1| Xt xP) = ﬁx,} 2dt + o (dt),
Pr( XL g=x{, Xt2+dt— 1| xt xE) = yxidt —l— o (dt),
with B
Yi = Xpar + Wi with W, =< A (0,02) .
@ Nonlinear Diffusion model
dXi = a (X¢) dt + B (X¢) dV4, Vi Brownian motion

d.
Y=Y (Xkat) +Wi, Wi S (0,07).
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Inference in State-Space Models

o Given observations yi.: := (y1,¥2,...,Yt), inference about

Xi:t := (X1, ..., X¢) relies on the posterior
p(Xlzty)/l:t)
X1- . = — - 7
p( 1.t|)/1.t) p(y]_:t)
where

t t
p(x1:t, y1:6) = p (x1) H (k| xu— 1)Hg SRS
k=2 =1

A\ J/

X1 t) P(Y1:t|X1:t)

}/1t / / Xltvylt Xmt

@ When X is finite & linear Gaussian models, {p (x¢| y1:¢) },~; can be
computed exactly. For non-linear models, approximations are
required: EKF, UKF, Gaussian sum filters, etc.

e Approximations of {p (x| yl;t)}tT:l provide approximation of

P(X1:T|}/1:T)-
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Monte Carlo Methods Basics Monte Carlo Methods

@ Assume you can generate Xl(:it) ~ p(x1:t| y1:t) where i =1, ..., N then

MC approximation is @ Problem 1: We cannot typically generate exact samples from
L p (x1:¢t| y1:t) for non-linear non-Gaussian models.
P (x| y1:e) = Z (5X 0 (x1:¢) @ Problem 2: Even if we could, algorithms to generate samples from
A= p (x1:¢| y1:¢) will have at least complexity O (t).
o Integration is straightforward. @ Typical solution to problem 1 is to generate approximate samples
f @r (x1:6) p (X1:t| y1.¢) dxie = f (Pt xi:t) P (x1:t| y1.¢) dxict using MCMC methods but these methods are not recursive.
=% Ly N, @ (Xl(?) @ SMC Methods solves partially Problem 1 and Problem 2 by
breaking the problem of sampling from p (x1.¢| y1:t) into a collection
o Marginalization is straightforward. of simpler subproblems. First approximate p (x1|y1) and p(y1) at
1N time 1, then p (x1:2| y12) and p (y1:2) at time 2 and so on.
P O yiie) = /ﬁ(X“‘ Viie) dXiik-1 0k 15t = N Z(sxk(’) () - e Each target distribution is approximated by a cloud of random
' = samples termed particles evolving according to importance sampling
e Basic and key property: V [% Nio (Xl(:'t)ﬂ = w, i.e. and resampling steps.

rate of convergence to zero is independent of dim (X') and t.
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Standard Baye5|an Recursion Bayesian Recursion on Path Space
@ In most textbooks, you will find the following recursion for o SMC approximate directly {p (x1:] YI:t)}tzl not {p (x| }/1:t)}t21
{p (x| }/1:t)}t21 : and relies on
o Prediction step o p (X1:t, yi:t) 8 (yelxe) f(xe|xe—1) p(X1:6=1, Y1:6-1)
p(Xlzt’ylzt) - -
p (y1:t) p(yel yre—1) p(y1:-1)
p (Xt| )/1:t—1) = /P (Xt—l. Xt| Y1:t—1) dxi—1 predictive p(x1:¢|y1:6~1)
= /p(xt’}/l:t—lvxt—l>P(Xt—1|y1:t—l)dXt—l _ 8 elxe) f x| xe1) p(xe-1]y1:e-1)
p(yel yi:e-1)
= /f(Xt‘thl)P(thly}’l:tfl) dxe 1. where
o Bayes Updating step p(yelyre-1) = /g (ve| xt) p(x1:e] yree—1) dxize
(l ) (yelxe) p(xe|yr.e-1) @ This can be alternatively written as
P{Xt| Y1:t) = . ..
o p (ye| yi:e-1) Prediction p(x1.¢|y1:e-1) = f (Xe| xe—1) p (X:t—1] Y1:6-1)
where Update p(x1:e| y1t) = g(ytlx(t)yt|(y)lqtt|f/)1 1),
p(ye|yr:e-1) /g Ye|xt) p(xt|y1:e-1) dxe @ SMC is a simple and natural simulation-based implementation of this
recursion.
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Monte Carlo Implementation of Prediction Step Importance Sampling Implementation of Updating Step

@ Our target at time t is

@ Assume you have at time t — 1 g (yel xt) p (x1:t] y1:e-1)

P\ Xt:t| Y1:t) =
1N ( t’ t) p(yt|)/1:t71)
P (xut-1|y1:e-1) = Z(le(’ » (x1:6-1) so by substituting p ( x1:¢| y1:t—1) to p (x1:¢| y1:t—1) we obtain
1:1
v . — D 1) = X; X dx
o By samplmgX ( | X! > and setting Xl(:? _ (Xl(:’t)_lvxt(l)> P (yelyr:e-1) g (vel xe) P (xu:e| yrie—1) dxaze

then

==

¢ <)
1Y Yog (el X").
P(X1t|)/1t 1 = ZfSXl(/t) X1t i=1
NS @ We now have

e Sampling from f (x¢| x;—1) is usually straightforward and can be done
even if f (x¢| x;—1) does not admit any analytical expression; e.g. P (x1:t| y1:t) =
biochemical network models.

g (ye|lx)p (X1t|y1t 1) N 0
Wi ooy (xi:e) -
()/t|)/1:t 1 ; t Xl(r) lt)

with W) o« g <yt| )?t(")) Sy ow) =1
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Multinomial Resampling Vanilla SMC: Bootstrap Filter (Gordon et al., 1993)
o We have a “weighted” approximation p (x1.¢| y1.t) of p (x1:¢| y1:¢) Attimet =1
e Sample )?1(') ~ 1 (x1) then

N .
ij (Xl:t’ }/I:t) - Z Wt(l)(s)?(f) (Xl:t) .
= b - IR0 (i) < ()
(i) p(x1|y1):;W1 (5)?1(,') (Xl), Wl O<g<y1‘X1 )

@ To obtain N samples X].; approximately distributed according to

X1:t| y1:t), resample N times with replacement N~ o
P (xtuel y1:e) P P @ Resample Xl(') ~ P (x1|y1) to obtain B (x1|y1) = & Ly 5X1(,-) (x1).

Xl(lt) ~ P (x| y1ae) At time t > 2
to obtain Sl i (i i S
W W0 @ Sample Xt() ~ f (xt|Xt(_)1> , set X1(;t) = <X1(;t)—1vXt( )> and
P (xw:t| y1e) = 25)(1(: Xi:t) = Z #5)?1(2 (x1:t) N , .
' = =1 . . p (x1:t| y1:t) = ZW %) (xw:t) Wt(l)(xg<)/f‘xt(l)>'
where { N/} follow a multinomial with [E [Nt(')] = v, =1 |
v [ngl)} _ NWt(i) <1 _ Wt(i)> _ @ Resample Xl(t) r\lJ p(x1 t| y1:t) to obtain
@ This can be achieved in O (N). P Ozt yie) = NZ’ 1 5 (Xl 2
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SMC Output SMC on Path-Space - figures by Olivier Cappé

@ At time t, we get 16
1.4
~ N (1 1.2
1% (Xlzt’}/l:t) = 2 Wt (5)?1("2 (Xlzt)v g 1t
~ : g 1
Il N 0.8
P (x1:t| y1:t) = N Y O (xae) 06
i=1 " 04 s 10 15 20 2
@ The marginal likelihood estimate is given by e
, . . N i, 1.6 ]
pie) =[TPnlywa) =TT e (Yk!Xk ) : .
k=1 k=1 i=1 e 1
e Computational complexity is O (N) at each time step and memory go‘;
requirements O (tN) . o8 |
o If we are only interested in p (x¢|y1:t) or p (st (x1:¢)| y1:t) where 04 . - - . J
st (x1:t) = e (Xe, Se—1 (x1:6-1)) - €.g St (x1:¢) = 2/2:1 X;% - is time index

fixed-dimensional then memory requirements O (N) .

Figure: p(x1|y1) and E [X1]y1] (top) and particle approximation of p (x1]|y1)
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Figure: p(x1]y1), p(x2|y12)and E[X1]y1], E[Xa| y1.2] (top) and particle Figure: p(x¢|y1:¢) and E[X¢| y1.¢] for t = 1,2, 3 (top) and particle
approximation of p (x1.2| y1:2) (bottom) approximation of p (x1.3] y1.3) (bottom)
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Figure: p(xt|y1:+) and E [Xt|y1.t] for t =1,...,10 (top) and particle Figure: p (xt|y1:+) and E [ Xt| y1.¢] for t =1, ..., 24 (top) and particle
approximation of p (x.10| y1:10) (bottom) approximation of p (x1.24| y1.04) (bottom)
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Remarks Another lllustration of the Degeneracy Phenomenon
@ Empirically this SMC strategy performs well in terms of estimating @ For the linear Gaussian state-space model described before, we can
the marginals {p (xt| y1:r) };>; - This is what is only necessary in compute exactly S;/t where
many applications thankfully.
@ However, the joint distribution p ( xi. .t) is poorly estimated when ;
. b J _ P ( 1.t| yl.t) p y St — / Z Xl% p (Xl:tl yl:t) Xm:t
t is large; i.e. we have in the previous example ]
P (x1:11] y1:4) = Oxz,, (x1:11) - using Kalman techniques.

. W. te the SMC estimate of thi tity using S;/t wh
e Degeneracy problem. For any N and any k, there exists t (k, N) ® We compute the SMC estimate of this quantity using 5/t where

such that for any t > t (k, N)

t
St = / Z X/% p (X1:t| Y1:t) dxy.¢

P (xuk| y1:t) = 0x;, (1) k=1

P (x1:t| y1:¢) is an unreliable approximation of p (xi.¢| y1:¢) as t /. can be computed sequentially.
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Another lllustration of the Degeneracy Phenomenon Some Convergence Results for SMC

a7 w w w w w w w w ‘ @ Numerous convergence results for SMC are available; see Del Moral
(2004,2013).
o Let ¢; : X" — R and consider

af = /q)t (X]_;t) P (X]_;t‘ y]_:t) Xm:tl
Qa3 [~ |

§0t /Gﬂt Xlt X1t|y1t)dxlt—_2(Pt<X1(t)>-
M@WWNWMWM

@ W @ We can prove that for any bounded function ¢ and any p >'1
517 < BOP) 19l

at - 7 IE“QD > \/N )
% W @ @ @ @ a & Jim VN (§: —9,) = N (0,0?).

a6 | .

Q5 B

4 N

Figure: S/t obtained through the Kalman smoother (blue) and its SMC 9 . ) .
estimate S¢/t (red). e Very weak results: B (t) and 07 can increase with t and will for a

path-dependent ¢; (x1.t) as the degeneracy problem suggests.
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Stronger Convergence Results Stronger Convergence Results
@ Assume the following exponentially stability assumption: For any @ Unbiasedness. The marginal likelihood estimate is unbiased
/
X1, Xl

E (ﬁ (}/1:1')) =p (ylzt) .

1 / t
§/ | (x| y2ie, Xo = x1) — p (xe| y2ue, X1 = x{) [ dxe < af for 0 < < 1. o Central Limit Theorem. There exists Bs < o s.t.

e Marginal distribution. For ¢; (x1.t) = ¢ (x¢—1:t), there exists lim VNlogp (yi.e) /p (y1:t) = N (0,52) with 72 < Bs t
By, By < o s.t. N—eo
o1/ B c(p) |g| @ Relative Variance Bound. Under exponential stability assumptions,
E[|o: — | ] P < JN =, there exists By < oo
) o ~ 2
Jim VN (§: —9,) = N (0,67) where o7 < B,, E ((—Z g“g - 1) ) < —B;‘Vt
1:t
i.e. there is no accumulation of numerical errors over time. _ N
o L1 distance. If 5 (xi.¢| y1.t) = E (P (x1:¢| y1:t)), there exists Bz < oo o Another Central Limit Theorem. Under exponential stability
st assumptions, for N = a1 T
Bs t
D (X1 +) — p (X1 ldxy < ——: ) R o2
/|P( 1.t’}/1.t) P( 1.t’}/1.t)‘ 1:t N -,—linoo |0gp(y1;t) /p (}/1:t) ~ N (_ . 0_2,“20_2> _

i.e. the bias only increases in t.
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@ Resampling is the source of the degeneracy problem and might appear
wasteful.

SMC provide consistent estimates under weak assumptions.

@ Under stability assumptions, uniform in time stability of the SMC

. @ The resampling step is an unbiased operation
estimates of {p (x¢|y1:t)},51 - pling step P

@ Under stability assumptions, relative variance of the SMC estimate of E [P (x1:¢| y1:0)| P (x1:¢| y1:0)] = P (x1:e| y1:t)
{p (y1:t) };>; only increases linearly with t.

e Even under_stability assumptions, one cannot expect to obtain but clearly it introduces some errors “locally” in time. That is for any
uniform in time stability for SMC estimates of {p (x1:¢| y1:¢) };~; ; this test function, we have
is due to the degeneracy problem.

@ Is it possible to Q1: eliminate, Q2: mitigate the degeneracy problem? \% {/ @ (x1:0) P (X1:t| y1:e) Xm:t] >V [/ @ (x1:¢) P (X1:t| y1ee) Xm:t:|

@ Answer: Q1: no, Q2: yes.

@ What about eliminating the resampling step?
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Sequential Importance Samping: SMC Without Resampling SIS For Stochastic Volatility Model
@ In this case, the estimate of the posterior is 1000
N () 500 J g
~ 1
Psis (xt:t| y1:t) = Z; We 050 (xa:e) . ‘ ‘ ‘ ‘
= 25 20 -15 -10 -5 0

1000

where Xl(:it) ~ p(x1.¢) and

t
i i i %5 20 5 T 5 0
w” 0<p(y1;t|X1(:t)> =T1e (Yk|Xt()>- | | ‘ ‘
k=1

@ In this case, the marginal likelihood estimate is

1 N (/) s = Importancé Weights (basé1$0 Iogarithm)>5 °
Psis (yit) = = )P <Y1:t X ) ,
() N ,; | X Figure: Histograms of logig (Wt(')) for t =1 (top), t = 50 (middle) and
. ¢ . t = 100 (bottom).
@ Relative variance of p <y1:t| Xl(:'g = Hg <yk| Xt(')) is increasing
k=1
exponentially fast... @ The algorithm performance collapse as t increases as expected.
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Central Limit Theorems A Toy Example

@ For both SIS and SMC, we have a CLT for the estimates of the o Consider the case where f (x| x) = u (xX') = N (x’; 0, 02) and
marginal likelihood g(y|x) =N (y;0,1— %) where 02 > 1.
B ) @ Assume we observe y; = - -+ = y; = 0 then we have
N (PSIS e) 1> N (0,0%s). ¢
P (}/1:t) ' ~ ( ) o 1 ot t/2
Bomc (yie) , v Psis )\ _ Tesis 1 1|
VA (PMe L) 1Y L (0, 0200c) ) ) - N | \ar
p (yi:t) ) 1/2
B . o t 4
@ The variance expressions are \% pSMC—(ylt) ~ —LSME 7 —1].
p (yit) NN |\207 -1
— P Xl t|y1r dX1 1 _ fp (}’1t|X1 t)P(Xl t)dXIt -1
ts's pP X11|y1 2(3’(“)”}/1 o If select 02 = 1.2 then it is necessary to use N & 2 x 10?3 particles to
X t X1: t _ 2
Tismc = f—y( L U e sy ey e obtain 285 = 102 for t = 1000.

_ /g YI|X1)V(X1)dX1 Ty fP (Yreelxi)p(xk yrk—1)dxe " )
pZ(y1) k=2 P? (Yt lyrk-1) @ To obtain %TMC = 1072, SMC requires only N == 10* particles:

. . . i i !
@ SMC “breaks” the integral over X't into t integrals over X. improvement by 19 orders of magnitude!
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Better Resampling Schemes Measuring Variability of the Weights

@ To measure the variation of the weights, we can use the Effective

@ Better resampling steps can be designed such that [E [N( )} = NW() Sample Size (ESS)
but V [Nt(i)} < NWt() <1 — Wt( )> ; residual resampling, minimal N ()2 1
entropy resampling etc. (Cappé et al., 2005). ESS = </—21 (Wt ) )
@ Residual Resampling. Set Klt(i) = LNWt(i)J, sample N?N from a , .
o ) o We have ESS = N if W,”) = 1/N for any i and ESS = 1if W, =1
multinomial of parameters (N, W; ) where and Wt(j) —1forj£i.
WEI) o Wt(i) — Nfllﬁ\vlt(") then set Nt( )= N( )+ N() @ Liu (1996) showed that for simple importance sampling for ¢ “regular
e Systematic Resampling. Sample U; ~ U [0, N] and define enough”
U, = U1+i_T1 for i =2, ..., N, then set ESS
Ni = HUJ . 2;’(;11 Wt(k) < U< Y1 Wt(k)}‘ with the convention (Z Wt (P( )) Vo(xielne) (ESS Z ( )>
Yoy :=0.

i.e. the estimate is roughly as accurate as using an iid sample of size
ESS from P (X1:t| yl:t)-
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Dynamic Resamplin Improving the Sampling Step
y g

@ Bootstrap filter. Sample particles blindly according to the prior

@ Resampling at each time step can be harmful: only resample when without taking into account the observation
necessary. ~ Very inefficient for vague prior/peaky likelihood.
@ Dynamic Resampling: If the variation of the weights as measured by e Optimal proposal/Perfect adaptation. Implement the following
ESS is too high, e.g. ESS < N /2, then resample the particles. alternative update-propagate Bayesian recursion
@ We can also use the entropy v
. Update p(xue-1|yie) = p(yt|ti8/f\(y)1<:lf,ll)|y“ u
. . P t . ) = ._ . , Xt—
Ent — — Z Wt(l) log, (Wt(l)> ropagate p (Xl.t’ Y1.t) P (Xl.t 1‘ YI.t) p (Xt’ Y, Xt 1)
i=1 where
e /() . _ (el xe—1) g (ye] xe—1)
o We have Ent = log, (N) if W,\") = 1/N for any i. We have Ent =0 p(xe|ye, xe1) = b (el xe1)

if W) =1and WY =1forj #1i.

~» Much more efficient when applicable; e.g.
f (Xt| Xt—l) =N (Xt; @ (Xt—l) ,Zv) ' 8 (}/t| Xt) =N (.yt;Xtv Zw) .
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A General Bayesian Recursion A General SMC Algorithm
@ Introduce an arbitrary proposal distribution g (x¢| yt, x¢—1); i.e. an Assume we have N weighted particles {Wt('_)l,Xl(:'t)_l} approximating
approximation to p (x¢| ¢, x¢—1) - p(x1:t—1| y1:t—1) then at time t,

@ We have seen that _— . (i . Jp
e Sample Xt(') ~ q (xt| yt,X,t(L)l) , set Xl(:'t) = (Xl(:'t)fl,Xt(')) and
g(}/t|Xt) f(Xt|Xt—l)P(Xlzt—1|Y1:t—1)

X1- 4) =
P( l.t‘yl.t) p(}/t|_y1:t71) _ N 0
P (X1:t| )’1:t) = E Wi 5;((1') (X1:t> '
so clearly = Lt
3 ()] 3 () 3 ()
. W(Xt—lyxtv)/t)q(Xt|yt1Xt—1)p(Xl:t—1|y1:t—1) W(i) W(i) f (Xt ’Xf—l)g <yt|Xf )
p (X1:t| YI:t) = t & W () (1)
P(}/t|}/1:t—1) Q(Xt yvat—1>
where - i
W (Xer, e, ye) = g (ye| xe) (x| xe—1) e If ESS< N/2 resample Xl(:'g ~ p(x1:t| y1:t) and set Wt(') — ﬁ to
q (Xe| yr, xe—1) obtain B (xw:t| yi:e) = 5 Ly Oy (xt:e).
1:t

@ This suggests a more general SMC algorithm.
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Building Proposals Implicit Proposals

@ Our aim is to select q (x¢| ¢, xt—1) as “close” as possible to @ Proposed recently by Chorin (2012). Let

p (X¢| ye, x¢—1) as this minimizes the variance of F(xe1,x) = log g (ye| x¢) + log f (xe| xe_1)

g (yelxe) f(x|xe—1)

W (Xe—1, X, Yt) = _ and
q (xe| ye, xe—1) x; = argmax F (x¢—1,x¢) = argmax p (Xe| ye, Xe—1)
e Example - EKF proposal: Let e We sample Z ~ N (0, I,,.), then we solve in X;
X = @ (Xi— Ve, Y=Y (X W, 1
t QD( t 1)+ t t ( f)+ ty F(Xt_l,X:)—F(Xt_l,Xt):§ZTZ, ZNN(O, Inx)
with Vi ~ N(0,2,), W, ~ N(0,%,,). We perform local linearization _ _ _ _
2% (x) so if there is a unique solution
X
Ve ¥ (9 (Xe1)) + — x )(Xt—(P(thl))ﬂLWt q(xe| ye, xe—1) = pz (z) |det0z/0x¢|
PR *
1 exp (—F (xt-1, %))
and use as a proposal. & |det dx; /2] g (yelxe) f(xe|lxe—1)
t
q(xe|ye.xe—1) < 8 (ye| xe) f(xe|xe-1). @ The incremental weight is
@ Any standard suboptimal filtering methods can be used: Unscented g (ye|xe) (x| xe—1) .
Particle filter, Gaussan Quadrature particle filter etc. q (xe| v, xe—1) o |detdx; /dz| exp (F (xe-1,x¢))
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Block Sampling Proposals Block Sampling Proposals
® Problem: we only sample X; at time t so, even if you use e Computational cost is increased from O (N) to O (LN) so is it worth
p (xt|yt, xt—1), the SMC estimates could have high variance if it?
WP(thlbfl:tfl)_[p (yf’ Xe-1)] is high. . o Consider the ideal scenario where
@ Block sampling idea: allows yourself to sample again X;_;1.+—1 as
well as X; in light of y;. Optimally we would like at time t to sample X = X1+ Vs
X,_»(I,)L+1;t ~p (Xt—L+1:t| Yi—L+1:t Xt(I,)L> Ye=Xe + W
and _ where X; ~ N (0,1) and V;, W; "5 A (0,1).
(i) (i) P (Xl(:lt) ym) @ In this case, we have
Wer e W ) X X0 , .
P ( Lit—L yl:t—l) P ( t—L41:¢ | YE—L+1:t t—L) p(Yelye—rv1e—1, xe—1) = P(Yelye—rr1ie—1. X )| < clxe— —xt_;[/2
x Wt(l_)lp (J/t| Yi—L+1:t-1, Xt'_)L> where the rate of exponential convergence depends upon the

signal-to-noise ratio if more general Gaussian AR are considered.
e When P(thL+1:t| thL+1:thth) and p (Yt‘ )/th+1:t71,thL) are not

available, we can use analytical approximations of them and still have _ _
consistent estimates (D., Briers & Senecal, 2006). (normalized) weight.

@ We can obtain an analytic expression of the variance of the
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Block Sampling Proposals

Variance At Each Iteration
T T T

log Variance

0 100 200 300 400 500 600 700 800 900 1000
lteration

Variance of incremental weight w.r.t. p(xg.e—r| yi:e—1) -

Block Sampling Proposals

Temporal Mean Variance of Importance Weights

0, T T T T T T T T

log Variance

Time averaged variance of of incremental weight w.r.t. p (xy.e—r| y1:6-1) -
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Fighting Degeneracy Using MCMC Steps

@ The design of "good” proposals can be complicated and/or time
consuming so, after the resampling step, a few particles might inherit
many offspring.

@ A standard way to limit degeneracy is known as the Resample-Move
algorithm (Gilks & Berzuini, 2001); i.e. using MCMC kernels as a
principled way to “jitter" the particle locations.

o A MCMC kernel K; (x].;| x1:t) of invariant distribution p (x1:¢| y1:t) is
a Markov transition kernel with the property that

p (xtel yie) = [ P Cxtel yie) Ke (b 1) b

ie. if Xi.e ~p (X1:t| }/1:1‘) and Xll;tl Xt ~ Ke (X{:t| Xlif) then
marginally X{., ~ p (xi:¢| y1:¢) -
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Fighting Degeneracy Using MCMC Steps

@ Example 1: Gibbs moves. /Set X1/;th = Xi.t—1 thlen sample Xt’fL+1
from p (Xt—L+1|)/t—L—l—let_Lth—L—i-Z)v sample Xt_L+2 from
p (Xt,Hg\ yt,LJrz,x;_LH,xt,LH) and so on until we sample X}
from p (x¢| ye, x{_;); that is
t—1

= Oxe s (X{:t—L) H p (X/i‘ Yk X//<_1: Xk+1)
k=t—L+1

K (X{;t‘ Xl:t)

X p (xe| ye.xi—1)
o Example 2: Metropolis-Hastings moves. Set X{., ; = Xi.+—; then
sample X, ., from q (XLHM‘ Xi—1, thL+1:t) and set
X{_141 = X[, with proba.
P (X:vaLl:t‘ Yt—L+1vXt—L) q (Xt—L+1:t| Xt—L X;L+1:t)

]. /\ * 1
P (Xt—L+1:t| }/t—L—I—ert—L) q (Xt—L—&-l:t{ Xt—L» thL+1:t)

otherwise set X/ ;. ; = Xi_ 1.
@ Contrary to MCMC, we typically do not use ergodic kernels in SMC.
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Example: Bearings-only-tracking

@ Target modelled

iid.
where V; '~

using a standard constant velocity model
Xe=AXi—1+ Vi

(0,X). The state vector

1000 T T —

Bootstrap - /
9001 RMFL(10) e ; -
— - EKF(5) -

— — —EKF(10) -

Degeneracy for Various Proposals

Xe=( Xt X2 X} X} ) contains location and velocity I
components. sool-
@ One only receives observations of the bearings of the target ol
—1( ¢
Yt = tan <X—t1 + Wt ]

iid. _ . . .
where W; S (0, 10 4) : i.e. the observations are almost noiseless.

@ We compare Bootstrap filter, SMC-EKF with L = 5,10, MCMC

(1)
moves L = 5,10 using dynamic resampling.

Figure: Average number of unique particles X, approximating p (x¢| y1:100);
time on x-axis, average number of unique particles on y-axis.
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Smoothing in State-Space Models

e Smoothing problem: given a fixed time T, we are interested in
. . T
p (x1:7| y1:7) or some of its marginals, e.g. {p (x¢|y1.7)},_; -
@ Smoothing is crucial to parameter estimation.

@ SMC provide consistent estimates under weak assumptions.

@ We can estimate {p (x| )/1:t)}t21 satisfactorily but our

approximations of {p (xi.¢| y1:t) },~; degenerates as t increases
because of resampling steps. - @ Direct SMC approximations of p (xi.7| y1.7) and its marginals

@ Resampling is crucial. P (xk| y1:7) are poor if T is large.

@ SMC provide “good” approximations of marginals {p (x¢| y1:t) },>1-
This can be used to develop efficient smoothing estimates. N
~~ Fixed-lag smoothing
~~ Forward-backward smoothing
~ (Generalized) two-filter smoothing

@ We can mitigate but not eliminate the degeneracy problem by the
design of “clever” proposals.

@ Smoothing methods to estimate p (x1.7| y1.7) can come to the
rescue.
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Fixed-Lag Smoothing Forward Backward Smoothing

@ The fixed-lag smoothing approximation relies on o Forward Backward (FB) decomposition states

p (x| y1:7) = p (xt| yr.e4a) for A large enough.

T

1
P(X1:T|)/1:T) :P(XT|Y1:T) P(Xr|)/1:T.Xt+1:T)

and quantitative bounds can be established under stability
assumptions.

@ This can be exploited by SMC methods (Kitagawa & Sato, 2001) =pOxrlyer) L Lp(xelyie xea)

t=1

~
[y

\'
[y

e Algorithmically: stop resampling {Xt(i)} beyond time t + A

(Kitagawa & Sato, 2001). f(xer1] xe) p(xe| y1:t)
. . C . . p(Xt|}/1:tht+1) = .

e Computational cost is O (N) but non-vanishing bias as N — oo p (Xet+1] y1:e)
(Olsson & al., 2008).

where

e Conditioned upon yi.T, {Xt}thl is a backward Markov chain of initial

e Picking A is difficult: A too small results in p (x¢| y1.14+a) being a distribution p (x7| y1.7) and inhomogeneous Markov transitions
poor approximation of p (x¢| y1.7). A too large improves the

approximation but degeneracy creeps in.

{p (X¢| yr:t, Xe41) tT:_ll :
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Forward Filtering Backward Sampling Forward Filtering Backward Smoothing
@ To obtain a sample from p (x1.7|y1.7) . @ Assume you want to compute the marginal smoothing distributions
T . .
o Forward filtering: compute and store {p (x¢|y1.¢)};_; {p (xt|y1:7)}¢—; instead of sampling from them.
o Backward sampling: sample X7 ~ p (x71|y;.7) then for e Forward filtering Backward smoothing (FFBS).

t=T-—1,..,1sample X¢ ~ p (x¢| y1.t, Xe41) -

. . th tt
@ SMC to obtain an approximate sample from p (x1.7|y1.7) il

d
o Forward filtering: compute and store {/ﬁ(xt]ylzt)}tT:l . pxlyr) = /p et xesa| yrer) dé

o Backward sampling: sample X7 ~ p (x7|y1.7) then for o
t=T-—1,..,1sample X; N/P\(Xt‘}/l:tvxt+1) where - p(XtJrl’}/l:T)p(Xt|y1:tth+1)dXt+1
R N filter at t
p (Xt| Yi:ts Xt+1) o« f (Xt+1| Xt) P (Xt| Y1:t) smoother at t+1 P N,

N f X X, X )
:/p(xt+1|)/1;r) ( t+1| t)p( t|)’1.t)
p(Xt‘H‘yl:t)

NV
backward transition p(x¢|y1:t.xe+1)

N

' dxt41.

) f (Xr+1\ Xt(l)> Sy (i) (xt) -
i ‘

@ Direct implementation O (NT) (Godsill, D. & West, 2004). Rejection
sampling possible if f (x¢+1]| xt) < C (x¢+1) (Douc et al., 2011) and @ For finite state-space HMM, it is surprisingly and unfortunately not
cost O (NT). the recursion usually implemented (Rabiner et al., 1989).
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SMC Forward Filtering Backward Smoothing Two-Filter Smoothing

e Forward filtering: compute and store {p ( x¢| }/1:t)}tT:1 using your @ An alternative to FB smoothing is the Two-Filter (TF) formula
favourite SMC.

e Backward smoothing: For t =T —1,...,1, we have
B (xlyir) =TV Wt<|’;(sx (x;) with W§|)T =1/N and

forward filter backward filter

N\

——
P (xe, Xer1] y1:7) o< p (xe| y1:e)f (Xe1| Xe) P (Ve1:7 | Xe41)

@ The backward information filter satisfies p (y7|x7) = g (y7|x7) and

~ o~ ~ f(Xt+1\Xt)
p(xe|yir) = pOxlye) [ P(Xt+1|)/1:T) K C A EATE

dxt i1
p (}/t:T| Xt) = /P (ytv)/t+l:T1Xt+1| Xt) dxi41
Py 10,0 0a) T, wY . x<f> (xt11)

Wb () — g (nlx) [ p(yernr|xen) f (el x) dan

@ Various particle methods have been proposed to approximate

(X(j) \X(i)> {p(ye1]| xt)}thl but rely implicitly on [ p (ye.7|x¢) dxe < o0 and try
1 to come up with a backward dynamics; e.g. solve

where

N
Z t+1|T

~ U) 1y
j=1 Yi—1f (X 11X ) Xis1= @ (Xe, Vir1) € Xe = ¢ 1 (Xe, Vir1) .

o Computational complexity is O (TN?) . This is incorrect.
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Generalized Two-Filter Smoothing SMC Generalized Two-Filter Smoothing

e Generalized Two-Filter smoothing (Briers, D. & Maskell,

e Forward filter: compute and store {p (x| y1;t)}tT:1 using your

2004-2010) favourite SMC.
. ) . =~ T .
forward filter backward filter ° Backvyard filter: compute and store {B (x| y+.7)},_, using your
lp (xe| yi:e)F (X1 Xt) (Xet1| Yeot: T) favourite SMC.

P (xexesa| yur) P (Xe+1) e Combination step: for any t € {1,..., T} we have
R/—/

artificial prior f (Xt+1| Xt)A
where P (xt, Xe+1] y1.1) < P (Xe| y1.7) ) P (Xe41] yet1:e)
P (Xer1] Yer1:m) <P (Yerr:T| Xe41) P (Xer1) - N N F (X(ll X( i)
@ By construction, we now have integrable p (x¢+1| yt+1.7) which we % E — JX(,> <) (Xe, Xe41)
can approximate using a backward SMC algorithm targeting i=1j=1 P (Xt+1> R

{ﬁ(XHl:T’}’tH:T)}i:T where
T T e Cost O (N2 T) but O (NT) through importance sampling (Briers, D.

B (x| yer) < B (xt) H F (x| xk—1) Hg (ye| i) - & Singh, _2005; Fearnhead, Wyncoll & Tawn, 2010) and fast
k=t41 k=t computational methods (Klaas et al., 2005).
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Convergence Results Comparison Direct Method vs FB and TF

@ Assume the model is stable and we are interested in approximating

e Exponentially stability assumption. For any xg, x{ A .
1 = [ ¢(xt) p(xe|y1.7) dx¢ using SMC.

%/}P(thyzzt,Xl =) = p (x| yze, X1 = xq) | dxe <o for [af < 1. Method Fixed-lag Direct SMC FB/TF
# particles N N N
@ Here ¢ denotes SMC estimates obtained using direct, fixed-lag FB cost O (TN) O (TN) O (TN?),0 (TN)
or TF method. Variance O (1/N) O(T—-t+1)/N) O(1/N)
e Marginal distribution. If 7 (x1.7) = @ (x¢), we have for the Bias o O(1/N) O(1/N)
standard path-based SMC estimate MSE=Bias’+Var o2+ O (1/N) O(T-t+1)/N) O(1/N)
Nli_rpOo VN (§1 — 97)=N(0,0%), A(T—t+1) <05 <A(T—t+1) e FB/TF provide uniformly “good” approximations of {p ( x¢| )/1:T)}tT:1
whereas direct method provide only "good" approximation for | T — t|
whereas for FB and TF estimates there exists B independent of T s.t. "small”.

@ “Fast” implementations FB and TF of computational complexit
lim VN (¢1 —97) =N (0,07) where 07 < B P p Py

Neoo O (NT) outperform other approaches as MSE is O (1/N) whereas it
is O((T—t+1)/N) for direct SMC.
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Convergence Results for Smoothed Additive Functionals Comparison Direct Method vs FB and TF
o Consider now the case where @7 (x1.7) = Y/_1 @ (x¢), so that @ Assume we are interested in approximating
9 =Y 1 [ ¢(x)p (x| y1.7) dxe using SMC.
or /q)T Casr) P (xiurlyur) dair Method Fixed-lag Direct SMC  FB/TF
B i d # particles N N N
= ;/(P(Xf)"(xt’y”) Xt cost O (TN) O(TN) O (TN?),O(TN)
_ _ _ _ _ Var. O(T/N) O(T?/N) O(T/N)
@ This type of functionals is crucial when performing ML parameter Bias To O(T/N) O(T/N)
estimation. MSE=Bias’+Var T2024+0 (T/N) O (T?/N) O (T?/N?)
@ We have for the standard path-based SMC estimate (Poyiadjis, D. &
Singh, 2010) @ “Naive” implementations FB and TF have MSE of same order as
B direct method for fixed computational complexity but MSE is bias
,Jim \/N(QBT —97) =N (0, (72T) where AT? < 03 < AT?. dominated for FB/TF whereas it is variance dominated for Direct
T SMC.
For the FB and TF estimates (Del Moral, D. & Singh, 2009), we have e “Fast” implementations FB and TF of computational complexity
lim \/N(CP?T —p) =N (0,0'2,-) where 02 < CT O (NT) outperform other approaches as MSE is O (T2/N2) whereas

N— oo itis O (T2/N) for direct SMC.
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Experimental Results Empirical Variance for Direct vs FB

@ Consider a linear Gaussian model

X =08X,_1+05V;, V; " N (0,1)
Yt :Xt‘l_ Wt, Wt lfl\sj (0,1)

Variance ofscore estimate W r. variance of score estimate w.r.l
o

E Mmmﬂﬂﬂﬂﬂﬂﬁ umﬂ’ﬂﬂﬂﬂ”ﬂﬁ

o 2500 5000 7500 10000 0 2500 5000 7500 10000 o 2500 5000 7500 10000 0 2500 5000 7500 10000

@ We simulate 10,000 observations and compute SMC estimates of

d Variance ofscore estmate w.rt Variance ofscore estimate w.r Variance ofscore estimate w.rt. Variance ofscore estimate w.r.
/GDT(XLT) p (x1.7|y1T) dxi.T g g .
400 /

for 4 different additive functionals 3 J

¢t (x1:t) = @e-1 (X1:t-1) + @ (Xe—1, X¢, ¢ ) including WH”H o HH

4)1 (Xe—1, Xt, Yt) = Xe—1Xt, (P2 (Xe—1, Xe, ye) = th- [Ground truth can mﬂﬂﬂ“ nﬂﬂﬂﬂ AHHHHHH

be computed using Kalman smoother.] T ™ T ™ N

@ We use SMC over 100 replications on the same dataset to estimate
the empirical variance. Direct (left) vs FB (right); the vertical scale is different
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score estimates for parametes

Algorithm 1 v Algorithm2
w0 N - T c00 @ SMC smoothing techniques allow us to “solve” the degeneracy
& ° + H] ‘ ’ @ SMC fixed-lag smoothing is the simplest one but has non-vanishing
500 - 500 bias difficult to quantify.
2900 s000 7SO0 10000 2500 5000 7500 10000 @ SMC FB and SMC TF algorithms provide uniformly “good”
score estimates for paramete . . ) ] R . .
Agoriim Agoritim? approximations of marginal smoothing distributions contrary to direct
.ol =~ ! T » method.
o o g R e & e %%’ @ In terms of MSE, only “fast” implementations of SMC FB/TF
o | . . .
& ° = ! 0 provide a gain in terms of MSE.
ol 200 e For direct imp_lem_entatiop SMC FB/TF, MSE is.of th.e same orc.ier but
Time steps Time steps SMC FB/TF is bias dominated and direct SMC is variance dominated.

Direct (left) vs FB (right)
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e Stochastic Volatility model

iid.
@ In most scenarios of interest, the state-space model contains an Xe = ¢pXe1+ 0V, Ve =N (0,1)

unknown static parameter 6 € © so that Y = Bexp (Xe/2) Ws, Wi ii.d. N (0,1)
X]_ ~ ],[9 (X]_) and Xt| (Xt—l = Xt—l) ~ f@ (Xt’Xt—l)- Where 9 — ((P,U'Q,‘B) )

@ The observations {Y;},-; are conditionally independent given o Biochemical Network model

X and
ke il (X = x0) ~ g (311 ) Pr (X, =L, XC, o s 52) = bl + 0 (d),
(AR = %) ™ 8 %) - Pr( Xk gy=xt—1, X2, go=xt+1| xt, x?) = Bxi x}dt + o (dt),
@ In many applications, we actually only care about 6 and would like to Pr (Xt g=xt XL ge=xi—1] X xE) = v xidt + o (dt),

estimate it off-line or on-line. )
with

Yi = Xia7 + Wi with W, = A (0,02)
where 0 = (a, B, 7).
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e To maximise £(6) w.r.t 0, use at iteration k + 1
@ Let y1.7 being given, the log-(marginal) likelihood is given by
Ok+1 = Ok + vk VL(O)]g—p
£(60) = log pp (y1.7) - )
where V£(6)|g_g, is the so-called score vector.
@ For any 6 € ©, one can estimate £(0) using standard SMC. methods,

variance O (T/N) .
o Direct maximization of £(8) difficult as SMC estimate £(6) is not a

° V£(9)|9:9k can be estimated using finite differences but more
efficiently using Fisher's identity (e.g. Cappé et al., 2005)

smooth function of 6 even for fixed random seed. VL) = /V log pp (x1:7. y1:7) Po (x1.7[y1:7) dxaT
@ For dim (X;) = 1, we can obtain smooth estimate of log-likelihood
function by using a smoothed resampling step (e.g. Pitt, 2002-2011); where

i.e. piecewise linear approximation of Pr (X: < x| y1:¢) .
Vlog pg (x1.7, y1:7) = V log pig (x1)

@ For dim (X;) > 1, we can obtain estimates of £(6) highly positively —i—ET Vlog fy ( xt| xt—1) +ZT Vlog go (y:| xt)
=2 t] Xe— t=1 t Xt ) -

correlated for neigbouring values in © (e.g. Lee, 2008).
@ An alternative is to use IPA (Coquelin, Deguest & Munos, 2009).
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Example: SV Model

@ Remember that
Xe = 0Xe_1 +0Ve, Vo = N(0,1)

Y, = Bexp (Xe/2) We, W, & N (0,1)

where we assume here that (02, ) are known so that 6 = ¢.
@ In this scenario
2
ﬁ (Xt - 9Xt—1) )
2
Xt—1 (Xt - GXt_]_) Xt—1X¢ 9Xt71

v|ng9(><t|xt—1): o2 = o2 — o2

1
log fy (x¢| xt—1) = —5 log (270?) —

hence

ve(s) = Eg (ZtT:Q ):2—1Xt Y1:T> - 6 (Zzz—ftz—l‘)/LT) |

Gradient Ascent using SMC

@ An obvious SMC approximation is given by

Okt = Ok + Tk W(e)‘
=6,
where V/E\@?) oo is estimated by your favourite SMC smoothing
technique. ‘

e As V/(0) is a smoothed additive functional, all previously presented
SMC methods and results do apply; see previous numerical results.

@ Similarly, it is possible to estimate the observed information matrix
—V?24(0) using SMC based on Louis identity (e.g. Cappé et al.,

2005) to implement a Newton-Raphson algorithm (Poyadjis, D. &
Singh, 2010).

A. Doucet ()
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ML Parameter Estimation using EM

@ The Expectation-Maximization (EM) algorithm is a celebrated
alternative to gradient ascent technique.
e To maximise £(0) w.r.t 0, the EM uses

Ox+1 = argmax Q(6,0).
where
Q(6k.0) = /lOgPG(XlvaYLT) po, (X1:7 [y1.7)dx1.T

and we know that
€(Ok+1) > £(0k).
o If pg(x1.7,y1:7) is in the exponential family then we have

O = A (T71=%)

where

-
1’97 = / (Z q)(XtLXtht)> po(xi.7|y1.T)dxi.T
t=2
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Example: SV Model

@ Remember that
Xe = 0Xe_1 +0oVe, Vi SN(0,1)
Y, = Bexp (X /2) We, W, "5 A (0,1)
where we assume here that (02, ) are known so that 6 = ¢.

@ In this scenario

1 1
log fy (x| xt-1) = —3 log (2710%) — 55 (% — Ox:1)°
1 o X% P Oxeax
= —5 |0g (27-[0- ) — ﬁ — 20—2 0-2
so that
Eq, (ZrTzz Xe—1X¢ )/1:T>

Okr1 = o :
]E9k <Zt:2 Xt—l‘ )’I:T>
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EM using SMC ML Parameter Estimation using Online Gradient

@ In many applications, we would like to estimate the parameter on-line.

@ Recursive maximum likelihood (Titterington, 1984; LeGland & Mevel,
1997) proceeds as follows

@ SMC approximation of the EM is direct. 01 = 0 + 7 Viog pa,, (ye| yie—1)
1:t L
@ As EM requires computing smoothed additive functionals

~0 = (Zthg (P(Xt—l,Xt,yt)) po(x1:7|y1.7)dx1. 7, all previously
presented SMC smoothing methods and results do apply.

where pp,, (y¢| y1:t—1) is computed using 6 at time k and
Y, ve =00, ¥, ¥? < 0. Under regularity conditions, this converges
towards a local maximum of the (average) log-likelihood.

@ There is obviously no more guarantee that £(6x,1) > £(6y) for finite o Note that
N but many positive experimental results; e.g. (Schon, Wills &
Ninness, 2011). Viog py,,. (yt|y1:e-1) = Vlog py,, (y1:t) — Vlog po,,; (y1:t-1)

is given by the difference of two pseudo-score vectors where

Vlog puy, (i) i= [ (Ehca Vlogfy (e xi-1)ly,
+ Viog g (vil Xe)lg, ) Pov. (xtel yiie) dxice
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ML Parameter Estimation using SMC Online Gradient Variance of the Gradient Estimate for Direct vs FB

@ SMC approximation follows

140 : :
Or11=0;+: Vlog Peo,., (}/t| }/1:t—1) 120 - . % *
* x 7
where 10 - - A
_ __ __ ol o ,
Vlog pg,. (ye|yi:t-1) = Vlog pg,., (y1:t) — Vlog pg,. | (y1:6-1) o o 2T
is given by the difference of SMC estimates of pseudo-score vectors ol . * j:é - B i
(Poyadjis, D. & Singh, 20/11_)\. ol 0009%@;%?)?: OOOOOOO oon oOOOOoOOOOOOO,
o Asymptotic variance of Vlog py,, (yt|y1:t~1) is uniformly bounded o
for FB estimate (Del Moral, D. & Singh, 2011) whereas it increases 0 500 10000 1500 20
linearly with t for direct SMC method.
@ Major Problem: If we use FB, this is not an online algorithm Figure: Empirical variance of the gradient estimate for standard versus FB
anymore as it requires a backward pass of order O (t) to approximate approximations (SV model)

V log pg,., (y1:t) -
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Online SMC ML Estimation using Direct Approximation

SMC ML Estimation for SV Model using FB

11

1L i ot PNl A b A A
09 1

08 rL WWWWM&WMWW

v fv ]
06 R

05 | ! 0s | ]
04 |- 1 04 f 1
B E T T Ty A *** n ' 03 [ o e APt o gl g
02 1 02 1
o1 t t t o1 : ‘
0 50 1000 1500 200 0 500 1000 1500 2000
x10 3 x10°

Figure: N = 10, 000 particles, online parameter estimates for SV model. Figure: N = 50 particles, online parameter estimates for SV model.
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Forward only Smoothing
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Forward only Smoothing

@ Forward smoothing recursion

Sequential Monte Carlo Methodsfor Bayesian

@ For the time being, we do not have an online implementation as a
backward pass of length t is required at time t.

@ It is possible to completely bypass the backward pass to compute Vtg (x¢) = / [Vt@_l (Xe—1) + =~ (Xt—lzty}/t)i| Po (Xe—1| y1:t—1, X¢) dxe—1

using FB

@ Proof is trivial

VB (Xt f Pt Xl-t) Pe (Xlzt—1| )’1:t—1,Xt) dxi:.t—1
t = [1pe-1 (x:e-1) + 22 (xe—1:6, ¥¢)] Po (X1:6—2| y1:6—2, Xe—1)
~e (i) = ) (et i) X Py (Xe—1| Y1:e-1, Xe) dxi:e—1

k=1
using a dynamic programming trick for the “backward” Markov chain = J( /Gl’t 1 (X1:0-1) Po (X1:e—2| Y1:e—2, Xe—1) dX1e—2
of transition densities {pg (xk| y1:k, Xk+1)} - 4

@ Let us introduce the “value” function

Vtg (Xt) = /Zt (Xlzt) Po (Xlzt—llylzt—lvxt) dxi.t—1

2? = /tﬁt (x1:t) Po (X1:¢] yi:e) dxa:e

where

Vtg—l(xtfl)
+o (Xe—1:6 ¥t)) Po (Xe—1| Yiie—1, Xe ) dXe—1

e Appears implicitly in Elliott, Aggoun & Moore (1996), Ford (1998)
and rediscovered a few times... Presentation follows here (Del Moral,
D. & Singh, 2009).

then
=0 = [ V2 () o (] ya) e
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SMC Forward only Smoothing

o At time t — 1, we have pp (x¢—1| y1:t-1) = % vazl (5X(,)1 (x¢—1) and
L

{Vtg_l (Xf(l_)1> }1gi§N'

o At time t, compute pg (x¢| y1:t) = YN, Wt(i)(SX(
t

( ) J [ 1 (1) + = (-1, Yt)] Po (Xt—1| )/1:t—1,Xt(i)) dx;_1
_ o4 9( XD [V (X)) += (x P X )]
: (XX, '

t:NZ ( (I))-

@ This estimate is exactly the same as the SMC FB estimate,
computational complexity O (N?).

i (xt) and set

ML Parameter Estimation using SMC Online Gradient

o At time t — 1, we have Py, , (Xe—1| y1:t-1), {VG“ ! <Xt( )1> }and

Viog pg,, , Vi:t—1) = [ foi_l (Xe—1) Poy, ; (Xe—1] y1:e—1) dxe—1

and obtained 0;.
@ At time t, use SMC to compute P, ( x¢| y1:+) and

’\7t91;t ( ' ) f [VG“ Y (xeo1) + (Xt—l:tv}/t):| Pos., (Xt—ll.yl:t—let(i)> dx;—-
~ (Xe—1:¢, yt) = Vlog fy (x¢| Xt—1)|9t + Vlog go (yt| Xt)|9t

and
Viog b, (vie) = [ VI () Po (] 1) i

@ Parameter update

9t+1 = 91‘ + Tt (v Iog pelzt (YI:t) - v IOg p91:t—1 (yllt*].))

A. Doucet ()
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Online ML Parameter Estimation through EM

@ Batch EM uses
-
2(;,'( — <Z @ (th:tv}/t)) Pe, (X1:T|y1:T)dX1:T|
t=2

Oiir = A (T*:%E)
@ Online EM uses

l’ffﬁl = Yt+1 f @ (Xt:t-l—let-l—l) Peltt(Xt, Xt+1|y1:t+1)dxt:t+1
t
+ (1= 7e41) Thes

IT - 7/)) Yk+1
I=k+2
X [ @ (Xk—1:k0 Vi) Poye (Xk—1, Xk | Y1:641) dXk—1:4

then set 6;11 = A (:?ﬁ) for {7¢}¢>1 satisfying Y, v+ = o0 and
Y72 < oo eg =t %with0.5<a <1

@ Under regularity conditions, this converges towards a local maximum
of the (average) log-likelihood (well not yet proven for HMM)
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Online ML Parameter Estimation through SMC EM

o At time t — 1, we have pp,, |, (x¢e—1|y1:t-1), {Va“ ! <Xt( )1>} and
obtained 0;.
o At time t, use SMC to compute Py, (X¢—1| y1:¢—1) and

Sore (D) SO
Ve (X7) = S {@ =) VA Geea) e (e )|

X Doy, <Xt71’y1:t71vXt(l)) dx;—1,
~0 = [V (xe) Boy, (Xe| ya:e) dxe

@ Parameter update
9t+1 =A <2?1:t>
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Application to SV Model Direct SMC vs Forward Smoothing for Online EM

15
«l @ For online gradient techniques, forward smoothing is stable contrary
I?)*: 1 U\\:‘\M‘N\M\JW‘MW\‘\WA\J‘h‘rm‘/W'"VWA‘IJ/’“\\’(’Wﬁ”’*ha/‘u‘,*\’Vu\u\w““’”vw"\‘\J\\VMN,W’“/,VIv,““/n\‘lJu«V“VWW«/\”’“”"”"’(‘/”“”«”\nv‘L“ 1.2 to the dlreCt methOd
|
f'”,'a @ Structure of online EM is significantly different.
(I)*: 08 »)‘Mw,\ﬂ\w'v"w‘rm,fn‘*‘«‘“ﬂ‘,\w“»*r‘Jﬂf“\“" TUNY T A A TN s e M —07%
£y @ We have seen previously that the MSE for smoothed additive
: functionals is of the same order for direct and FB estimates.
[
l @ Direct method is variance dominated, FB is bias dominated.
{ @ We compare experimentally both methods on a simple linear Gaussian
(©92=01 [ o e 0,007 model over 100 runs.
0 500 100 1500 2000 2500

(x 103)

Figure: Online EM algorithm with N = 200 initialized at (4),02,,82) =(0.1,1,2);
the true values are (cp o2, 52) = (0.8,0.1,1).
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Experimental Comparisons of Direct vs Forward Smoothing Summary

for online EM

@ SMC smoothing techniques can be used to perform off-line and
on-line ML parameter estimation.

@ FB estimates for smoothed additive functionals can be computed
using a forward only procedure.

@ Forward smoothing allows us to implement a degeneracy free on-line

gradient ascent algorithm.

For on-line EM, forward smoothing and direct methods have both

pros and cons with no clear winner.

3
G
(]

Bias reduction approaches are currently under study.

o o

Reldtive Variame
3 o
ol
@ 3
(4

Figure: Parameter estimates for online EM obtained over 50 runs compared

to ground truth: direct (left) vs forward smoothing (right).
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Bayesian Parameter Inference in State-Space Models Cautionary Warning

A h
¢ fissume we have o For fixed 8, V [By (y1:¢)] /P2 (y1:t) is in O (t/N).

Xt| (Xt—l = Xt—l) ~ fa (Xt| Xt—l) ! @ In a Bayesian context, the problem is even more complex as

Yel (Xe = x¢) ~ go (ye| xe) p (0] y1:t) & pg (y1:t) p (6) and we have 8; = 6 for all t so the latent

) ) . ) process does not enjoy mixing properties.
where 0 is an unknown static parameter with prior p (6). _ o ) _
@ A seemingly attractive idea consists of using MCMC steps on 0; e.g.

(Andrieu, De Freitas & D.,1999; Fearnhead, 2002; Gilks & Berzuini
p (6, x1:¢| y1:t) = p (0] y1:t) po (x1:¢] y1:t) 2001; Storvik, 2002; Carvalho et al., 2010) so as to introduce some
“noise” on the 8 component of the state.

e Given data yj.;, inference relies on

where
p (6] yit) o pa (yi:e) p (6) © When p (0] 1.6, x1:0) = p (] st (it yaze) ) where st (xr, yize) s 2
fixed-dimensional of sufficient statistics, the algorithm is particularly
@ SMC methods apply as it is a standard model with extended state elegant but still implicitly relies on SMC approximation of
Zy = (Xt, 0¢) where p (x1:t| y1:+) so degeneracy will creep in.
f(ze|ze-1) = 0,4 (0r) fo, (xe|xe—1). & (ye|z) = go, (ye| xe) - @ As dim (Z;) = dim (X;) +dim (0), such methods are not
S~ recommended for high-dimensional 8, especially with vague priors.

practical problems
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SMC with MCMC Step for Parameter Estimation A Toy Example

@ Given at time t — 1, the approximation

@ Linear Gaussian state-space model
i.i.d.

N
(9 X1:t— 1|y1t 1 = 25<9( N 1-) > 9 Xl:t—l), Xt—GXt 1+0'Vvt, Vt ~ (0,1)
t

-1 t-1
I Yt Xt+UWth thfl\(/j (0,1)

we update the approximation as follows at time t.
o sample X ~ £y (X)) set X[ = (x{L;, X"} and ° Weset p(6) 11, (6) so
t—1

_ (i) p (0] y:t, x1:t) N (9? mt:‘ff.?) 1(71,1) (0)
P (0, x| y1e) = 2N, W, 5( %) (0, x1:¢)

Wt(i) * . (yr| )~<t(,-)> . ut where 21, _ el
e t 2,60 Mt 2,t DLt
0) (i) () with
@ Resample Xj./ ~ p(x1.t| y1.t) then sample 6;’ ~ p (9| )/1;t.X1:t> 5. — Zt; e Spe— Zt; 2
obtain B (0, xi:¢| y1:t) = & L1y 5(95;),)(1(:;3) (0, x1:¢). R R
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SMC with MCMC Step for Parameter Estimation

@ At timet —1, ((95/_)1,X§i)1, St(i)1> we have

N
Z 5(95’71.)((:')1'5(:') ) (0, x¢—1,5t-1) -

XX,

)
i N1 (i N\ L .
95) ~N (9; (52(2> 51(2 (552) ) 1(_1,1) (6) to obtain
/ﬁ (9, Xty 5t| }/I:t) = ﬁ ):,Nzl 5(9£i)’Xt(i)v5t(i)> (9.Xt, St)-
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Another Toy Example

@ Linear Gaussian state-space model
Xt = pth]_ + Vt, Vt Il\(/j (0, ].)
Yt:Xt+0'Wt, Wt I’I\Sj (0,1)
o Weset p ~U_y)and 0? ~ZIG(1,1).

@ We use particle filter with perfect adaptation and Gibbs moves with
N = 10000; particle learning (Andrieu, D. & De Freitas, 1999;
Carvalho et al., 2010)

@ We compare to the ground truth obtained using Kalman filter on
states and grid on parameters.

lllustration of the Degeneracy Problem

a

% Tl\ i
e |
® _
@ L _
01 L _
% E1) F11) i) am ity w i) m 1) E11)
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Figure: Estimates of p (p|y1.¢) and p (U2| Y1;t) over 50 runs (red) vs ground
truth (blue) for t = 103,2.103, ..., 5.103 for N = 10*.
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Online Bayesian Parameter Estimation Offline Bayesian Parameter Estimation

e Given a collection of observations y1.7 := (y1,...,y7), T being fixed,
inference relies on the posterior density
@ All proposed procedures for online Bayesian parameter estimation are
deficient. p (0, xu.7|yT) =P (O y1:7) Po (x1.7| y1:7)
@ Some artificial dynamics can be introduced but then we do not o< p (0, x1.7, y1.7)
approximate {p (0, x:¢| y1:¢) };~1; €8 (Liu & West, 2001; Flury &

Shephard, 2010). where
@ Methods based on MCMC steps are elegant but do suffer from the r r
degeneracy problem and provide unreliable approximations. p (6. x1.7,y1.7) < p(8) po (x1) gf@ (xt| xe-1) tljlgG (yelxt) -

@ We show how to address this problem using particle MCMC (Andrieu,
D. & Holenstein, JRSS B, 2010).
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Common MCMC Approaches and Limitations Metropolis-Hastings (MH) Sampling

_ _ _ ) ) @ To bypass these problems, we want to update jointly 6 and Xj.7.
o MCMC lIdea: Simulate an ergodic Markov chain {6 (i), X1.7 (1) };5¢

of invariant distribution p (0, x1.7| y1.7)... infinite number of
possibilities.

@ Assume that the current state of our Markov chain is (60, x1.7), we
propose to update simultaneously the parameter and the states using

. . . o . - a proposal
e Typical strategies consists of updating iteratively Xi.7 conditional

upon 6 then 6 conditional upon Xj.7. q (05, x5.7)] (0, x1.7)) = q(6%|0) qo- (X]:7| y1.7) -
@ To update Xi.7 conditional upon 6, use MCMC kernels updating

subblocks according to py ( Xe:tK—1| Yeits Kk —10 Xe—1 Xet K )- @ The proposal (0%, x{.;) is accepted with MH acceptance probability

e Standard MCMC algorithms are inefficient if 6 and Xi.7 are strongly . p (0%, 5t yir) q((xT 9)’ (xi7.0%))
correlated. A 7
. . . L . p (6. x.7y1T) q (0.7, 0%)] (xu7.0))
@ Strategy impossible to implement when it is only possible to sample
from the prior but impossible to evaluate it pointwise. e Problem: Designing a proposal qg- (xj.7| y1:7) such that the

acceptance probability is not extremely small is very difficult.
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“Idealized” Marginal MH Sampler Implementation Issues

@ Consider the following so-called marginal Metropolis-Hastings (MH)
algorithm which uses as a proposal

q (.7, 07)] (x:7,0)) = q (07 0) po- (x1.7[y1:7) -

@ The MH acceptance probability is

p(g*'xf:Tl)/l:T) ((Xl T, 9)| (x1 T,G*))
p(0,x.7Iy1:7) q((x.7.0 | x1.7,0))
(
(

@ Problem 1: We do not know py (y1:T) = fpg (XI:T:)/l:T) dxi.T
analytically.

e Problem 2: We do not know how to sample from pg (x1.7|y1.7) .

1A e “lIdea”: Use SMC approximations of pg (x1.7|y1.7) and pp (y1.7).

A o it) p(07) 9 (0]67)
yi:7) p(0) q(67]6)

@ In this MH algorithm, Xj.7 has been essentially integrated out.

20
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e Given 6, SMC methods provide approximations of pg (x1.7|y1.7) and ® Under mixing assumptions, we have

Po (y1:7)- Vper)l o 5 T
@ At time T, we obtain the following approximation of the posterior of p; (vi.t)  ~ N
interest

R e Under mixing assumptions, we also have
Pe(X1:T|Y1T 2—25 (k X1T
_ 1

T
Ep . . — . . . < Cp—
and an approximation of py (y1.7) is given by /| [P (xi:7|y1:7)] = po (x| yrer)[ dbacr < N

T T N so if | run an SMC method to obtain Py (x1.7| y1.7) then
Po (yi:1) =Po (1) [ [Po (ve|ya:e—1) = | ( E <yt| X, )) Xi.7 ~ P (x1:7| y1:7), unconditionally Xi.7 ~ E [ps (-] y1.7)].

t=2 =1 k=1 @ Problem: We cannot compute analytically the particle filter proposal
if we use fy (x| x;_1) as a proposal. go (x1:7| y1:7) = E [ps (x1:7| y1.7)] as it involves an expectation w.r.t

all the variables appearing in the particle algorithm...
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“Idealized” Marginal MH Sampler

At iteration i

@ Sample 68 ~ q (6|0 (i —1)).

o Sample X{.1 ~ pg (x1.7| y1.7) -

@ With probability

peo- (y1.7) p (0%) q(6(i—1)/6")

Po(i-1) 1) p (0 (i —1)) q (00 (i —1))
set 0 (i) = 0", X1.7 (i) = X{'; otherwise set 0 (i) =0 (i — 1),
Xt () =X.r(i—1).

1A

Particle Marginal MH Sampler

At iteration i

@ Sample 68 ~ g (0|60 (i —1)) and run an SMC algorithm to obtain
//56* (X1:T| yl:T) and /IBG* (ylzT)-

e Sample X1 ~ Pp (x1.7| y1:7) -

e With probability

Pe (y1:7) P (67) q(6(i—1)[6")
Po(i—1) 1) p(0(i—1)) q(6%]6 (i —1))

set 0 (i) = 0%, X1.7 (/) = X{. otherwise set 0 (i) =6 (i — 1),
Xl:T (/) = Xl:T (’ - 1) :

[N

Feb. 2015
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Validity of the Particle Marginal MH Sampler

Sequential Monte Carlo Methodsfor Bayesian

@ Proposition. Assume that the ‘idealized’ marginal MH sampler chain

is ergodic then, under very weak assumptions, the PMMH sampler

chain is ergodic and admits p(6, x;.7| y1.7) whatever being N > 1.

@ It is easy to show the simpler result that the PMMH admits
p( 0| y1.7) as invariant distribution whatever being N > 1.

@ Let U denote all the r.v. introduce to build the SMC estimate then
write Pp (y1.7) = Pp (y1.7, U) and from unbiasedness

[ B0 (im0 (w) du = o (7).

109 / 126
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An Incomplete But Trivial Proof

@ The PMMH targets the distribution
7T (0,u) o< p(0) P (yi:7,u) qp (u)
which satisfies
7 (0) = p(6] y1.1).

@ The PMMH sampler uses as a proposal
q ((0%,u")|(0,u)) = q(67[0) qo- (u”)

and

(0",u) q((6,u)[(0",u™)) _ p(0")P (y1.7,u")qpx (u”) _q(6]6")ge(u)
m(0,u) q((6*,u*)[(6,u)) P(0)Po(y1:T.u)qe(u)  q(6*[60)qg«(u*)
_ P(O7)pgr (yr:T,u™) q(6]0”)
p(0)Po(yr.T.u) q(6%]6)

@ Trivial but deep result: if you plug any unbiased likelihood estimate
within a MCMC scheme, you do not perturb the invariant distribution.

Feb. 2015
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Explicit Structure of the Target Distribution

@ Let first consider the case where T = 1.
@ Proposal distribution

a((07. k) ]0) = ator10) [T (7)) W

J/

-~

qe+ (u)
e Target distribution

won™) o0 £ (n147) [l (47)

5@6’1 )

@ We have already shown

(0 k™) per) B )
el ((9 k,xl(l:N)> ‘ 9) q (6] 6) pe- (1)
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Sampling from the Target Distribution

@ To sample from this target distribution
e Sample K from a uniform distribution on {1, ..., N'}.
e Sample (G,Xl(K)> from p (60, x1|y1). (We do not know how to do this,

this is why we use MCMC).
@ Sample Xl(m) ~ Hp (x1) for m # K.

Explicit Structure of the Target Distribution

@ The target is given by

7t (9, k,xl(LN)) o p(0) (i1 89 ()/1\ Xl(m))>

but Wl(k) = gp (y1|x1(k)) / <Eg:1 8o (yl|x1(m)>> :

@ Hence, we can actually rewrite the target as

p <9,X1(k)‘)/1> N
—

[Too () w

m=1

N (9,k,x1(1:N)) =

Ho (Xl(m)> :

@ This shows that we are able to sample from p (6, x;| y1) and not only
its marginal p (6] y1) .

m=1;,m#k
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Explicit Structure of the Target Distribution

@ This construction can be extended to the case T > 1.

@ To sample from this target distribution

o Sample indexes from a uniform distribution on {1, ..., N}T
corresponding to an ancestral line.

e Sample 6 and Xi.7 for this ancestral line from p (0, x1.7| y1.7). (We
do not know how to do this, this is why we use MCMC).

@ Run a conditional SMC algorithm compatible with Xi.7 and its
ancestral lineage; see (Andrieu, D. & Holenstein, 2010).
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Conditional SMC “Idealized” Gibbs Sampler

@ To sample from p (6, x1.7| y1.7), an MCMC strategy consists of using
the following block Gibbs sampler.

At iteration i

e Sample Xi.7 (i) ~ Po(i—1) (x1:.7| y1:7)-
e Sample 6 (i) ~ p (0] y1.7, X1.7 (1)) .

e Problem: We do not know how to sample from py ( x1.7| y1:7).

e Naive particle approximation where Xi.7 (i) ~ B (x1.7|y1.7.6 (1)) is
substituted to Xi.7 (/) ~ p (x1.7|y1.7,0 (i) is obviously incorrect.

Figure: Example of N — 1 = 4 ancestral lineages generated by a conditional SMC

algorithm for N =5, T = 3 conditional upon X12:3 and 812:3
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Particle Gibbs Sampler Nonlinear State-Space Model

At iteration i

o Sample 0 (i) ~ p (60]yr.7, Xi.7 (i — 1)). @ Consider the following model
@ Run a conditional SMC algorithm for 6 (i) consistent with )
X1.7 (i — 1) and its ancestral lineage. Xe = =X,_1+ o5 tL L 80512t + V;,
N . : 2 1+ X2,
e Sample X1.7 (i) ~ P (x1.7|y1.7,0 (i) from the resulting )
approximation (hence its ancestral lineage too). Y, = Xe W,
20

where Vi ~ N (0,02), Wy ~ N (0,02) and X; ~ N (0,5%).

@ Use the prior for {X;} as proposal distribution.
@ Proposition. Assume that the ‘ideal’ Gibbs sampler chain is ergodic
then under very weak assumptions the particle Gibbs sampler chain is

ergodic and admits p (6, xi.7| y1.7) as an invariant distribution for
any N > 2.

@ For a fixed 8, we evaluate the expected acceptance probability as a
function of N.
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Inference for Stochastic Kinetic Models Experimental Results

o Two species X} (prey) and X? (predator)

140 T T

Pr( Xt go=xitl, X2, g=xE | xt xF) = axtdt+o(dt), | prodator
Pr (Xt1+dt:xt1—1, Xt2+dt:Xf2+1| th,xtz) = Bx} x?dt + o (dt),

Pr( XL g=xt X2, go=xt—1| xt, x?) = yx¢dt + o (dt),

e
. Ml

with .
Yi = Xiar + Wi with W, "= A (0,02) .
@ We are interested in the kinetic rate constants 6 = (a, B,y) a priori
distributed as (Boys et al., 2008; Kunsch, 2011)

a~G(1,10), B~G(1,025), 7~ G(1,75).

@ MCMC methods require reversible jumps, Particle MCMC requires 20
only forward simulation.

o 1 2 3 4 5 6 7 8 9 10 152253 354 4.5 006 0.2 048 1.2 3 4 5 6 7 8

Simulated data Posterior distributions
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Autocorrelation Functions Summary

\ @ B o Offline Bayesian parameter inference is feasible by using SMC
Lol soparticls —— | o 50 particies proposals within MCMC.
: 100 parqcles e . 100 particles - .
200 partioes T 200 partios T @ This approach does not suffer from degeneracy problem and N scales

1000 particles - 1000 particles ———

roughly linearly with T.

e Particle MCMC allow us to perform Bayesian inference for dynamic
models for which only forward simulation is possible.

0.4 0.4

@ Computationally intensive but several implementations on GPU
already available and applications in control, ecology, econometrics,
biochemical systems, epidemiology, water resources research etc.

- —— @ Selection of N is a key issue and some guidelines are available (D.,
0 100 200 300 400 500 0 100 200 300 400 500 Pltt, Deligiannidis & KOhn, 2014)

Autocorrelation of a (left) and B (right) for the PMMH sampler for
various N.
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