
Sequential Monte Carlo Methods
for Bayesian Computation

A. Doucet

Feb. 2015

A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Computation Feb. 2015 1 / 126

Monte Carlo Methods

MCMC are the tools of choice in Bayesian computation for over 20
years whereas SMC have been widely used for 15 years in vision and
robotics.

Both MCMC and SMC are asymptotically (as you increase
computational eorts) bias-free but computationally expensive.

The development of new methodology combined to the emergence of
cheap multicore architectures makes now SMC a powerful
alternative/complementary approach to MCMC to address general
Bayesian computational problems.
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Some References and Resources

A.D., J.F.G. De Freitas & N.J. Gordon (editors), Sequential Monte
Carlo Methods in Practice, Springer-Verlag: New York, 2001.

P. Del Moral, Feynman-Kac Formulae: Genealogical and Interacting
Particle Systems with Applications, Springer-Verlag: New York, 2004.

Webpage with links to papers and codes:
http://www.stats.ox.ac.uk/~doucet/smc_resources.html

Thousands of papers on the subject appear every year.
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Organization of Lectures

State-Space Models (approx.3 hours)

SMC filtering and smoothing
Maximum likelihood parameter inference
Bayesian parameter inference

Beyond State-Space Models (approx. 1 hour)

SMC methods for generic sequence of target distributions
SMC samplers.
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State-Space Models

Let {Xt}t1 be a latent/hidden X -valued Markov process with

X1  µ (·) and Xt | (Xt1 = x)  f ( ·| x) .

Let {Yt}t1 be an Y-valued Markov observation process such that
observations are conditionally independent given {Xt}t1 and

Yt | (Xt = x)  g ( ·| x) .

General class of time series models aka Hidden Markov Models
(HMM) including

Xt = Ψ (Xt1,Vt ) , Yt = Φ (Xt ,Wt )

where Vt ,Wt are two sequences of i.i.d. random variables.

Aim: Infer {Xt} given observations {Yt} on-line or o-line.
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State-Space Models

State-space models are ubiquitous in control, data mining,
econometrics, geosciences, system biology etc. Since Jan. 2014, more
than 16,900 papers have already appeared (source: Google Scholar).
Finite State-space HMM: X is a finite space, i.e. {Xt} is a finite
Markov chain

Yt | (Xt = x)  g ( ·| x)
Linear Gaussian state-space model

Xt = AXt1 + BVt , Vt
i.i.d. N (0, I )

Yt = CXt +DWt , Wt
i.i.d. N (0, I )

Switching Linear Gaussian state-space model: Xt =

X 1t ,X

2
t



where

X 1t

is a finite Markov chain,

X 2t = A

X 1t

X 2t1 + B


X 1t

Vt , Vt

i.i.d. N (0, I )

Yt = C

X 1t

X 2t +D


X 1t

Wt , Wt

i.i.d. N (0, I )
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State-Space Models

Stochastic Volatility model

Xt = φXt1 + σVt , Vt
i.i.d. N (0, 1)

Yt = β exp (Xt/2)Wt , Wt
i.i.d. N (0, 1)

Biochemical Network model

Pr

X 1t+dt=x

1
t+1,X

2
t+dt=x

2
t

 x1t , x2t

= α x1t dt + o (dt) ,

Pr

X 1t+dt=x

1
t1,X 2t+dt=x

2
t+1

 x1t , x2t

= β x1t x

2
t dt + o (dt) ,

Pr

X 1t+dt=x

1
t ,X

2
t+dt=x

2
t1

 x1t , x2t

= γ x2t dt + o (dt) ,

with
Yk = X 1k∆T +Wk with Wk

i.i.d. N

0, σ2


.

Nonlinear Diusion model

dXt = α (Xt ) dt + β (Xt ) dVt , Vt Brownian motion

Yk=γ (Xk∆T ) +Wk , Wk
i.i.d. N


0, σ2


.
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Inference in State-Space Models

Given observations y1:t := (y1, y2, . . . , yt ), inference about
X1:t := (X1, ...,Xt ) relies on the posterior

p (x1:t | y1:t ) =
p (x1:t , y1:t )

p (y1:t )

where

p (x1:t , y1:t ) = µ (x1)
t

∏
k=2

f (xk | xk1)
  

p(x1:t )

t

∏
k=1

g (yk | xk )
  
p( y1:t |x1:t )

,

p (y1:t ) =

· · ·


p (x1:t , y1:t ) dx1:t

When X is finite & linear Gaussian models, {p (xt | y1:t )}t1 can be
computed exactly. For non-linear models, approximations are
required: EKF, UKF, Gaussian sum filters, etc.
Approximations of {p (xt | y1:t )}Tt=1 provide approximation of
p (x1:T | y1:T ) .
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Monte Carlo Methods Basics

Assume you can generate X (i )1:t  p (x1:t | y1:t ) where i = 1, ...,N then
MC approximation is

p (x1:t | y1:t ) =
1
N

N

∑
i=1

δ
X (i )1:t
(x1:t )

Integration is straightforward.


ϕt (x1:t ) p (x1:t | y1:t ) dx1:t 


ϕt (x1:t ) p (x1:t | y1:t ) dx1:t

= 1
N ∑N

i=1 ϕ

X (i )1:t



Marginalization is straightforward.

p (xk | y1:t ) =

p (x1:t | y1:t ) dx1:k1dxk+1:t =

1
N

N

∑
i=1

δ
X (i )k
(xk ) .

Basic and key property: V

1
N ∑N

i=1 ϕ

X (i )1:t


= C (t dim(X ))

N , i.e.

rate of convergence to zero is independent of dim (X ) and t.
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Monte Carlo Methods

Problem 1: We cannot typically generate exact samples from
p (x1:t | y1:t ) for non-linear non-Gaussian models.

Problem 2: Even if we could, algorithms to generate samples from
p (x1:t | y1:t ) will have at least complexity O (t) .
Typical solution to problem 1 is to generate approximate samples
using MCMC methods but these methods are not recursive.

SMC Methods solves partially Problem 1 and Problem 2 by
breaking the problem of sampling from p (x1:t | y1:t ) into a collection
of simpler subproblems. First approximate p (x1| y1) and p (y1) at
time 1, then p (x1:2| y1:2) and p (y1:2) at time 2 and so on.

Each target distribution is approximated by a cloud of random
samples termed particles evolving according to importance sampling
and resampling steps.
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Standard Bayesian Recursion

In most textbooks, you will find the following recursion for
{p (xt | y1:t )}t1 .
Prediction step

p (xt | y1:t1) =

p (xt1, xt | y1:t1) dxt1

=

p (xt | y1:t1, xt1) p (xt1| y1:t1) dxt1

=

f (xt | xt1) p (xt1| y1:t1) dxt1.

Bayes Updating step

p (xt | y1:t ) =
g (yt | xt ) p (xt | y1:t1)

p (yt | y1:t1)

where
p (yt | y1:t1) =


g (yt | xt ) p (xt | y1:t1) dxt
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Bayesian Recursion on Path Space

SMC approximate directly {p (x1:t | y1:t )}t1 not {p (xt | y1:t )}t1
and relies on

p (x1:t | y1:t ) =
p (x1:t , y1:t )

p (y1:t )
=
g (yt | xt ) f (xt | xt1)

p (yt | y1:t1)

p (x1:t1, y1:t1)

p (y1:t1)

=
g (yt | xt )

predictive p( x1:t |y1:t1)  
f (xt | xt1) p (x1:t1| y1:t1)

p (yt | y1:t1)

where

p (yt | y1:t1) =

g (yt | xt ) p (x1:t | y1:t1) dx1:t

This can be alternatively written as

Prediction p (x1:t | y1:t1) = f (xt | xt1) p (x1:t1| y1:t1) ,

Update p (x1:t | y1:t ) =
g ( yt |xt )p( x1:t |y1:t1)

p( yt |y1:t1)
.

SMC is a simple and natural simulation-based implementation of this
recursion.
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Monte Carlo Implementation of Prediction Step

Assume you have at time t  1

p (x1:t1| y1:t1) =
1
N

N

∑
i=1

δ
X (i )1:t1

(x1:t1) .

By sampling X (i )t  f

xt |X

(i )
t1


and setting X (i )1:t =


X (i )1:t1,

X (i )t


then

p (x1:t | y1:t1) =
1
N

N

∑
i=1

δX (i )1:t
(x1:t ) .

Sampling from f (xt | xt1) is usually straightforward and can be done
even if f (xt | xt1) does not admit any analytical expression; e.g.
biochemical network models.
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Importance Sampling Implementation of Updating Step

Our target at time t is

p (x1:t | y1:t ) =
g (yt | xt ) p (x1:t | y1:t1)

p (yt | y1:t1)

so by substituting p (x1:t | y1:t1) to p (x1:t | y1:t1) we obtain

p (yt | y1:t1) =

g (yt | xt ) p (x1:t | y1:t1) dx1:t

=
1
N

N

∑
i=1
g

yt | X (

i )
t


.

We now have

p (x1:t | y1:t ) =
g (yt | xt ) p (x1:t | y1:t1)

p (yt | y1:t1)
=

N

∑
i=1
W (i )
t δX (i )1:t

(x1:t ) .

with W (i )
t ∝ g


yt | X (

i )
t


, ∑N

i=1W
(i )
t = 1.
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Multinomial Resampling

We have a “weighted” approximation p (x1:t | y1:t ) of p (x1:t | y1:t )

p (x1:t | y1:t ) =
N

∑
i=1
W (i )
t δX (i )1:t

(x1:t ) .

To obtain N samples X (i )1:t approximately distributed according to
p (x1:t | y1:t ), resample N times with replacement

X (i )1:t  p (x1:t | y1:t )

to obtain

p (x1:t | y1:t ) =
1
N

N

∑
i=1

δ
X (i )1:t
(x1:t ) =

N

∑
i=1

N (i )t
N

δX (i )1:t
(x1:t )

where

N (i )t


follow a multinomial with E


N (i )t


= NW (i )

t ,

V

N (1)t


= NW (i )

t


1W (i )

t


.

This can be achieved in O (N).
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Vanilla SMC: Bootstrap Filter (Gordon et al., 1993)

At time t = 1

Sample X (i )1  µ (x1) then

p (x1| y1) =
N

∑
i=1
W (i )
1 δX (i )1

(x1) , W
(i )
1 ∝ g


y1| X (

i )
1


.

Resample X (i )1  p (x1| y1) to obtain p (x1| y1) = 1
N ∑N

i=1 δ
X (i )1
(x1).

At time t  2

Sample X (i )t  f

xt |X

(i )
t1


, set X (i )1:t =


X (i )1:t1,

X (i )t

and

p (x1:t | y1:t ) =
N

∑
i=1
W (i )
t δX (i )1:t

(x1:t ) , W
(i )
t ∝ g


yt | X (

i )
t


.

Resample X (i )1:t  p (x1:t | y1:t ) to obtain
p (x1:t | y1:t ) =

1
N ∑N

i=1 δ
X (i )1:t
(x1:t ).
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SMC Output

At time t, we get

p (x1:t | y1:t ) =
N

∑
i=1
W (i )
t δX (i )1:t

(x1:t ) ,

p (x1:t | y1:t ) =
1
N

N

∑
i=1

δ
X (i )1:t
(x1:t ) .

The marginal likelihood estimate is given by

p (y1:t ) =
t

∏
k=1

p (yk | y1:k1) =
t

∏
k=1


1
N

N

∑
i=1
g

yk | X

(i )
k


.

Computational complexity is O (N) at each time step and memory
requirements O (tN) .
If we are only interested in p (xt | y1:t ) or p ( st (x1:t )| y1:t ) where
st (x1:t ) = Ψt (xt , st1 (x1:t1)) - e.g. st (x1:t ) = ∑t

k=1 x
2
k - is

fixed-dimensional then memory requirements O (N) .
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SMC on Path-Space - figures by Olivier Cappė
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Figure: p (x1 | y1) and E [X1 | y1 ] (top) and particle approximation of p (x1 | y1)
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Figure: p (x1 | y1) , p (x2 | y1:2)and E [X1 | y1 ] , E [X2 | y1:2 ] (top) and particle
approximation of p (x1:2 | y1:2) (bottom)
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Figure: p (xt | y1:t ) and E [Xt | y1:t ] for t = 1, 2, 3 (top) and particle
approximation of p (x1:3 | y1:3) (bottom)
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Figure: p (xt | y1:t ) and E [Xt | y1:t ] for t = 1, ..., 10 (top) and particle
approximation of p (x1:10 | y1:10) (bottom)
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Figure: p (xt | y1:t ) and E [Xt | y1:t ] for t = 1, ..., 24 (top) and particle
approximation of p (x1:24 | y1:24) (bottom)
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Remarks

Empirically this SMC strategy performs well in terms of estimating
the marginals {p (xt | y1:t )}t1 . This is what is only necessary in
many applications thankfully.

However, the joint distribution p (x1:t | y1:t ) is poorly estimated when
t is large; i.e. we have in the previous example

p (x1:11| y1:24) = δX 1:11
(x1:11) .

Degeneracy problem. For any N and any k, there exists t (k,N)
such that for any t  t (k,N)

p (x1:k | y1:t ) = δX 1:k
(x1:k ) ;

p (x1:t | y1:t ) is an unreliable approximation of p (x1:t | y1:t ) as t .
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Another Illustration of the Degeneracy Phenomenon

For the linear Gaussian state-space model described before, we can
compute exactly St/t where

St =
  t

∑
k=1

x2k


p (x1:t | y1:t ) dx1:t

using Kalman techniques.

We compute the SMC estimate of this quantity using St/t where

St =
  t

∑
k=1

x2k


p (x1:t | y1:t ) dx1:t

can be computed sequentially.
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Another Illustration of the Degeneracy Phenomenon
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Figure: St/t obtained through the Kalman smoother (blue) and its SMC
estimate St/t (red).
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Some Convergence Results for SMC

Numerous convergence results for SMC are available; see Del Moral
(2004,2013).
Let ϕt : X t  R and consider

ϕt =


ϕt (x1:t ) p (x1:t | y1:t ) dx1:t ,

ϕt =


ϕt (x1:t ) p (x1:t | y1:t ) dx1:t =
1
N

N

∑
i=1

ϕt

X (i )1:t


.

We can prove that for any bounded function ϕ and any p  1

E [|ϕt  ϕt |
p ]
1/p 

B (t) c (p) ϕ∞
N

,

lim
N∞


N (ϕt  ϕt ) N


0, σ2

t


.

Very weak results: B (t) and σ2t can increase with t and will for a
path-dependent ϕt (x1:t ) as the degeneracy problem suggests.
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Stronger Convergence Results

Assume the following exponentially stability assumption: For any
x1, x 1

1
2

 p (xt | y2:t ,X1 = x1) p

xt | y2:t ,X1 = x 1

 dxt  αt for 0  α < 1.

Marginal distribution. For ϕt (x1:t ) = ϕ (xtL:t ), there exists
B1,B2 < ∞ s.t.

E [|ϕt  ϕt |
p ]
1/p 

B1 c (p) ϕ∞
N

,

lim
N∞


N (ϕt  ϕt ) N


0, σ2t


where σ2t  B2,

i.e. there is no accumulation of numerical errors over time.
L1 distance. If p (x1:t | y1:t ) = E (p (x1:t | y1:t )), there exists B3 < ∞
s.t. 

|p (x1:t | y1:t ) p (x1:t | y1:t )| dx1:t 
B3 t
N
;

i.e. the bias only increases in t.
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Stronger Convergence Results

Unbiasedness. The marginal likelihood estimate is unbiased

E (p (y1:t )) = p (y1:t ) .

Central Limit Theorem. There exists B5 < ∞ s.t.

lim
N∞


N log p (y1:t ) /p (y1:t ) N


0, σ2t


with σ2t  B5 t.

Relative Variance Bound. Under exponential stability assumptions,
there exists B4 < ∞

E


p (y1:t )

p (y1:t )
 1

2

B4 t
N

Another Central Limit Theorem. Under exponential stability
assumptions, for N = α1T

lim
T∞

log p (y1:t ) /p (y1:t ) N



α2

2
σ2, α2σ2


.
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Summary

SMC provide consistent estimates under weak assumptions.

Under stability assumptions, uniform in time stability of the SMC
estimates of {p (xt | y1:t )}t1 .
Under stability assumptions, relative variance of the SMC estimate of
{p (y1:t )}t1 only increases linearly with t.
Even under stability assumptions, one cannot expect to obtain
uniform in time stability for SMC estimates of {p (x1:t | y1:t )}t1 ; this
is due to the degeneracy problem.

Is it possible to Q1: eliminate, Q2: mitigate the degeneracy problem?

Answer: Q1: no, Q2: yes.
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Is Resampling Really Necessary?

Resampling is the source of the degeneracy problem and might appear
wasteful.

The resampling step is an unbiased operation

E [p (x1:t | y1:t )| p (x1:t | y1:t )] = p (x1:t | y1:t )

but clearly it introduces some errors “locally” in time. That is for any
test function, we have

V


ϕ (x1:t ) p (x1:t | y1:t ) dx1:t


 V


ϕ (x1:t ) p (x1:t | y1:t ) dx1:t



What about eliminating the resampling step?
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Sequential Importance Samping: SMC Without Resampling

In this case, the estimate of the posterior is

pSIS (x1:t | y1:t ) =
N

∑
i=1
W (i )
t δ

X (i )1:t
(x1:t )

where X (i )1:t  p (x1:t ) and

W (i )
t ∝ p


y1:t |X

(i )
1:t


=

t

∏
k=1

g

yk |X

(i )
t


.

In this case, the marginal likelihood estimate is

pSIS (y1:t ) =
1
N

N

∑
i=1
p

y1:t |X

(i )
1:t



Relative variance of p

y1:t |X

(i )
1:t


=

t

∏
k=1

g

yk |X

(i )
t


is increasing

exponentially fast...
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SIS For Stochastic Volatility Model
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Figure: Histograms of log10

W (i )
t


for t = 1 (top), t = 50 (middle) and

t = 100 (bottom).

The algorithm performance collapse as t increases as expected.
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Central Limit Theorems

For both SIS and SMC, we have a CLT for the estimates of the
marginal likelihood


N

pSIS (y1:t )

p (y1:t )
 1


 N


0, σ2t ,SIS


,


N

pSMC (y1:t )

p (y1:t )
 1


 N


0, σ2t ,SMC


.

The variance expressions are

σ2t ,SIS =
 p2( x1:t |y1:t )

p(x1:t )
dx1:t  1 =


p2( y1:t |x1:t )p(x1:t )dx1:t

p2(y1:t )
 1

σ2t ,SMC =
 p2( x1 |y1:t )

µ(x1)
dx1 +∑t

k=2

 p2( x1:k |y1:t )
p( x1:k1 |y1:k1)f ( xk |xk1)

dx1:k  t

=

g 2( y1 |x1)µ(x1)dx1

p2(y1)
+∑t

k=2


p2( yk :t |xk )p( xk |y1:k1)dxk

p2( yk :t |y1:k1)
 t

SMC “breaks” the integral over X t into t integrals over X .
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A Toy Example

Consider the case where f (x | x) = µ (x ) = N

x ; 0, σ2


and

g (y | x) = N

y ; 0, 1 1

σ2

where σ2 > 1.

Assume we observe y1 = · · · = yt = 0 then we have

V


pSIS (y1:t )

p (y1:t )


=

σ2t ,SIS
N

=
1
N


σ4

2σ2  1

t/2
 1


,

V


pSMC (y1:t )

p (y1:t )




σ2t ,SMC
N

=
t
N


σ4

2σ2  1

1/2

 1


.

If select σ2 = 1.2 then it is necessary to use N  2 1023 particles to
obtain

σ2t ,SIS
N = 102 for t = 1000.

To obtain
σ2t ,SMC
N = 102, SMC requires only N  104 particles:

improvement by 19 orders of magnitude!
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Better Resampling Schemes

Better resampling steps can be designed such that E

N (i )t


= NW (i )

t

but V

N (i )t


< NW (i )

t


1W (i )

t


; residual resampling, minimal

entropy resampling etc. (Cappé et al., 2005).

Residual Resampling. Set N (i )t =

NW (i )

t


, sample N

1:N
t from a

multinomial of parameters

N,W

(1:N )
t


where

W
(i )
t ∝ W (i )

t N1 N (i )t then set N (i )t = N (i )t + N
(i )
t .

Systematic Resampling. Sample U1  U

0, 1N


and define

Ui = U1 + i1
N for i = 2, ...,N, then set

Nit =


Uj : ∑i1

k=1W
(k )
t  Uj  ∑i

k=1W
(k )
t

 with the convention
∑0
k=1 := 0.
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Measuring Variability of the Weights

To measure the variation of the weights, we can use the Eective
Sample Size (ESS)

ESS =


N

∑
i=1


W (i )
t

2
1

We have ESS = N if W (i )
t = 1/N for any i and ESS = 1 if W (i )

t = 1
and W (j)

t = 1 for j = i .
Liu (1996) showed that for simple importance sampling for ϕ “regular
enough”

V


N

∑
i=1
W (i )
t ϕ


X (i )t


 Vp( x1:t |y1:t )


1
ESS

ESS

∑
i=1

ϕ

X (i )t


;

i.e. the estimate is roughly as accurate as using an iid sample of size
ESS from p (x1:t | y1:t ).
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Dynamic Resampling

Resampling at each time step can be harmful: only resample when
necessary.

Dynamic Resampling: If the variation of the weights as measured by
ESS is too high, e.g. ESS < N/2, then resample the particles.
We can also use the entropy

Ent = 
N

∑
i=1
W (i )
t log2


W (i )
t



We have Ent = log2 (N) if W
(i )
t = 1/N for any i . We have Ent = 0

if W (i )
t = 1 and W (j)

t = 1 for j = i .
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Improving the Sampling Step

Bootstrap filter. Sample particles blindly according to the prior
without taking into account the observation
 Very inecient for vague prior/peaky likelihood.

Optimal proposal/Perfect adaptation. Implement the following
alternative update-propagate Bayesian recursion

Update p (x1:t1| y1:t ) =
p( yt |xt1)p( x1:t1 |y1:t1)

p( yt |y1:t1)

Propagate p (x1:t | y1:t ) = p (x1:t1| y1:t ) p (xt | yt , xt1)

where

p (xt | yt , xt1) =
f (xt | xt1) g (yt | xt1)

p (yt | xt1)

 Much more ecient when applicable; e.g.
f (xt | xt1) = N (xt ; ϕ (xt1) ,Σv ) , g (yt | xt ) = N (yt ; xt ,Σw ) .
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A General Bayesian Recursion

Introduce an arbitrary proposal distribution q (xt | yt , xt1); i.e. an
approximation to p (xt | yt , xt1) .
We have seen that

p (x1:t | y1:t ) =
g (yt | xt ) f (xt | xt1) p (x1:t1| y1:t1)

p (yt | y1:t1)

so clearly

p (x1:t | y1:t ) =
w (xt1, xt , yt ) q (xt | yt , xt1) p (x1:t1| y1:t1)

p (yt | y1:t1)

where

w (xt1, xt , yt ) =
g (yt | xt ) f (xt | xt1)

q (xt | yt , xt1)

This suggests a more general SMC algorithm.
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A General SMC Algorithm

Assume we have N weighted particles

W (i )
t1,X

(i )
1:t1


approximating

p (x1:t1| y1:t1) then at time t,

Sample X (i )t  q

xt | yt ,X

(i )
t1


, set X (i )1:t =


X (i )1:t1,

X (i )t

and

p (x1:t | y1:t ) =
N

∑
i=1
W (i )
t δX (i )1:t

(x1:t ) ,

W (i )
t ∝ W (i )

t1

f

X (i )t

X (i )t1

g

yt | X (

i )
t



q

X (i )t

 yt ,X (
i )
t1

 .

If ESS< N/2 resample X (i )1:t  p (x1:t | y1:t ) and set W
(i )
t  1

N to
obtain p (x1:t | y1:t ) =

1
N ∑N

i=1 δ
X (i )1:t
(x1:t ).
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Building Proposals

Our aim is to select q (xt | yt , xt1) as “close” as possible to
p (xt | yt , xt1) as this minimizes the variance of

w (xt1, xt , yt ) =
g (yt | xt ) f (xt | xt1)

q (xt | yt , xt1)
.

Example - EKF proposal: Let

Xt = ϕ (Xt1) + Vt , Yt = Ψ (Xt ) +Wt ,

with Vt  N (0,Σv ),Wt  N (0,Σw ). We perform local linearization

Yt  Ψ (ϕ (Xt1)) +
∂Ψ (x)

∂x


ϕ(Xt1)

(Xt  ϕ (Xt1)) +Wt

and use as a proposal.

q (xt | yt , xt1) ∝ g (yt | xt ) f (xt | xt1) .

Any standard suboptimal filtering methods can be used: Unscented
Particle filter, Gaussan Quadrature particle filter etc.
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Implicit Proposals

Proposed recently by Chorin (2012). Let

F (xt1, xt ) = log g (yt | xt ) + log f (xt | xt1)

and
xt = argmaxF (xt1, xt ) = argmax p (xt | yt , xt1)

We sample Z  N (0, Inx ), then we solve in Xt

F (xt1, xt ) F (xt1,Xt ) =
1
2
ZTZ , Z  N (0, Inx )

so if there is a unique solution

q (xt | yt , xt1) = pZ (z) |det ∂z/∂xt |

∝
exp (F (xt1, xt ))

|det ∂xt/∂z |
g (yt | xt ) f (xt | xt1)

The incremental weight is

g (yt | xt ) f (xt | xt1)
q (xt | yt , xt1)

∝ |det ∂xt/∂z | exp (F (xt1, xt ))

A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Computation Feb. 2015 42 / 126

Block Sampling Proposals

Problem: we only sample Xt at time t so, even if you use
p (xt | yt , xt1), the SMC estimates could have high variance if
Vp( xt1 |y1:t1) [p (yt | xt1)] is high.
Block sampling idea: allows yourself to sample again XtL+1:t1 as
well as Xt in light of yt . Optimally we would like at time t to sample

X (i )tL+1:t  p

xtL+1:t | ytL+1:t ,X

(i )
tL



and

W (i )
t ∝ W (i )

t1

p

X (i )1:t

 y1:t



p

X (i )1:tL

 y1:t1


p

X (i )tL+1:t

 ytL+1:t ,X
(i )
tL



∝ W (i )
t1p


yt | ytL+1:t1,X

(i )
tL



When p (xtL+1:t | ytL+1:t , xtL) and p (yt | ytL+1:t1, xtL) are not
available, we can use analytical approximations of them and still have
consistent estimates (D., Briers & Senecal, 2006).
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Block Sampling Proposals

Computational cost is increased from O (N) to O (LN) so is it worth
it?

Consider the ideal scenario where

Xt = Xt1 + Vt
Yt = Xt +Wt

where X1  N (0, 1) and Vt ,Wt
i.i.d. N (0, 1).

In this case, we have

|p(yt |ytL+1:t1, xtL)p(yt |ytL+1:t1, x tL)| < c |xtL x

tL|/2

L

where the rate of exponential convergence depends upon the
signal-to-noise ratio if more general Gaussian AR are considered.

We can obtain an analytic expression of the variance of the
(normalized) weight.
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Block Sampling Proposals

Variance of incremental weight w.r.t. p (x1:tL| y1:t1) .
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Block Sampling Proposals

Time averaged variance of of incremental weight w.r.t. p (x1:tL| y1:t1) .
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Fighting Degeneracy Using MCMC Steps

The design of “good” proposals can be complicated and/or time
consuming so, after the resampling step, a few particles might inherit
many ospring.

A standard way to limit degeneracy is known as the Resample-Move
algorithm (Gilks & Berzuini, 2001); i.e. using MCMC kernels as a
principled way to “jitter” the particle locations.

A MCMC kernel Kt (x 1:t | x1:t ) of invariant distribution p (x1:t | y1:t ) is
a Markov transition kernel with the property that

p

x 1:t
 y1:t


=

p (x1:t | y1:t )Kt


x 1:t
 x1:t


dx1:t ,

i.e. if X1:t  p (x1:t | y1:t ) and X 1:t |X1:t  Kt (x 1:t |X1:t ) then
marginally X 1:t  p (x1:t | y1:t ) .
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Fighting Degeneracy Using MCMC Steps

Example 1: Gibbs moves. Set X 1:tL = X1:tL then sample X tL+1
from p


xtL+1| ytL+1, x tL, xtL+2


, sample X tL+2 from

p

xtL+2| ytL+2, x tL+1, xtL+3


and so on until we sample X t

from p

xt | yt , x t1


; that is

Kt

x 1:t
 x1:t


= δx1:tL


x 1:tL

 t1

∏
k=tL+1

p

x k
 yk , x k1, xk+1



 p

x t
 yt , x t1



Example 2: Metropolis-Hastings moves. Set X 1:tL = X1:tL then
sample X tL+1 from q


x tL+1:t

 xtL, xtL+1:t

and set

X tL+1 = X

tL+1 with proba.

1
p

xtL+1:t

 ytL+1, xtL


p (xtL+1:t | ytL+1, xtL)
q

xtL+1:t | xtL, xtL+1:t



q

xtL+1:t

 xtL, xtL+1:t
 ,

otherwise set X tL+1 = XtL+1.
Contrary to MCMC, we typically do not use ergodic kernels in SMC.
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Example: Bearings-only-tracking

Target modelled using a standard constant velocity model

Xt = AXt1 + Vt

where Vt
i.i.d. N (0,Σ). The state vector

Xt =

X 1t X 2t X 3t X 4t

T
contains location and velocity

components.

One only receives observations of the bearings of the target

Yt = tan1

X 3t
X 1t


+Wt

where Wt
i.i.d. N


0, 104


; i.e. the observations are almost noiseless.

We compare Bootstrap filter, SMC-EKF with L = 5, 10, MCMC
moves L = 5, 10 using dynamic resampling.
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Degeneracy for Various Proposals
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Figure: Average number of unique particles X (i )t approximating p (xt | y1:100);
time on x-axis, average number of unique particles on y-axis.
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Summary

SMC provide consistent estimates under weak assumptions.

We can estimate {p (xt | y1:t )}t1 satisfactorily but our
approximations of {p (x1:t | y1:t )}t1 degenerates as t increases
because of resampling steps.

Resampling is crucial.

We can mitigate but not eliminate the degeneracy problem by the
design of “clever” proposals.

Smoothing methods to estimate p (x1:T | y1:T ) can come to the
rescue.
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Smoothing in State-Space Models

Smoothing problem: given a fixed time T , we are interested in
p (x1:T | y1:T ) or some of its marginals, e.g. {p (xt | y1:T )}Tt=1 .
Smoothing is crucial to parameter estimation.

Direct SMC approximations of p (x1:T | y1:T ) and its marginals
p (xk | y1:T ) are poor if T is large.

SMC provide “good” approximations of marginals {p (xt | y1:t )}t1.
This can be used to develop ecient smoothing estimates.
 Fixed-lag smoothing
 Forward-backward smoothing
 (Generalized) two-filter smoothing
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Fixed-Lag Smoothing

The fixed-lag smoothing approximation relies on

p (xt | y1:T )  p (xt | y1:t+∆) for ∆ large enough.

and quantitative bounds can be established under stability
assumptions.

This can be exploited by SMC methods (Kitagawa & Sato, 2001)

Algorithmically: stop resampling

X (i )t


beyond time t + ∆

(Kitagawa & Sato, 2001).

Computational cost is O (N) but non-vanishing bias as N  ∞
(Olsson & al., 2008).

Picking ∆ is dicult: ∆ too small results in p (xt | y1:t+∆) being a
poor approximation of p (xt | y1:T ). ∆ too large improves the
approximation but degeneracy creeps in.
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Forward Backward Smoothing

Forward Backward (FB) decomposition states

p (x1:T | y1:T ) = p (xT | y1:T )
T1

∏
t=1
p (xt | y1:T , xt+1:T )

= p (xT | y1:T )
T1

∏
t=1
p (xt | y1:t , xt+1)

where

p (xt | y1:t , xt+1) =
f (xt+1| xt ) p (xt | y1:t )

p (xt+1| y1:t )
.

Conditioned upon y1:T , {Xt}Tt=1 is a backward Markov chain of initial
distribution p (xT | y1:T ) and inhomogeneous Markov transitions
{p (xt | y1:t , xt+1)}T1t=1 .
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Forward Filtering Backward Sampling

To obtain a sample from p (x1:T | y1:T ) ,

Forward filtering: compute and store {p (xt | y1:t )}
T
t=1

Backward sampling: sample XT  p (xT | y1:T ) then for
t = T  1, ..., 1 sample Xt  p (xt | y1:t ,Xt+1) .

SMC to obtain an approximate sample from p (x1:T | y1:T )

Forward filtering: compute and store {p (xt | y1:t )}
T
t=1 .

Backward sampling: sample XT  p (xT | y1:T ) then for
t = T  1, ..., 1 sample Xt  p (xt | y1:t ,Xt+1) where

p (xt | y1:t ,Xt+1) ∝ f (Xt+1 | xt ) p (xt | y1:t )

∝
N

∑
i=1

f

Xt+1 |X

(i )
t


δ
X (i )t

(xt )

Direct implementation O (NT ) (Godsill, D. & West, 2004). Rejection
sampling possible if f (xt+1| xt )  C (xt+1) (Douc et al., 2011) and
cost O (NT ) .
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Forward Filtering Backward Smoothing

Assume you want to compute the marginal smoothing distributions
{p (xt | y1:T )}Tt=1 instead of sampling from them.

Forward filtering Backward smoothing (FFBS).

smoother at t  
p (xt | y1:T ) =


p (xt , xt+1| y1:T ) dxt+1

=

p (xt+1| y1:T ) p (xt | y1:t , xt+1) dxt+1

=
 smoother at t+1  
p (xt+1| y1:T )

f (xt+1| xt )

filter at t  
p (xt | y1:t )

p (xt+1| y1:t )  
backward transition p( xt |y1:t ,xt+1)

dxt+1.

For finite state-space HMM, it is surprisingly and unfortunately not
the recursion usually implemented (Rabiner et al., 1989).
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SMC Forward Filtering Backward Smoothing

Forward filtering: compute and store {p (xt | y1:t )}Tt=1 using your
favourite SMC.

Backward smoothing: For t = T  1, ..., 1, we have
p (xt | y1:T ) = ∑N

i=1W
(i )
t |T δ

X (i )t
(xt ) with W

(i )
T |T = 1/N and

p (xt | y1:T ) = p (xt | y1:t )  
1
N ∑N

i=1 δ
X
(i )
t
(xt )


p (xt+1| y1:T )  

∑N
j=1W

(j)
t+1|T δ

X
(j)
t+1
(xt+1)

f ( xt+1 |xt )
f ( xt+1 |xt )p( xt |y1:t )dxt

dxt+1

= ∑N
i=1W

(i )
t |T δ

X (i )t
(xt )

where

W (i )
t |T =

N

∑
j=1
W (j)
t+1|T

f

X (j)t+1|X

(i )
t



∑N
l=1 f


X (j)t+1|X

(l)
t

 .

Computational complexity is O

TN2


.
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Two-Filter Smoothing

An alternative to FB smoothing is the Two-Filter (TF) formula

p (xt , xt+1| y1:T ) ∝

forward filter  
p (xt | y1:t )f (xt+1| xt )

backward filter  
p (yt+1:T | xt+1)

The backward information filter satisfies p (yT | xT ) = g (yT | xT ) and

p (yt :T | xt ) =

p (yt , yt+1:T , xt+1| xt ) dxt+1

= g (yt | xt )

p (yt+1:T | xt+1) f (xt+1| xt ) dxt+1

Various particle methods have been proposed to approximate
{p (yt :T | xt )}Tt=1 but rely implicitly on


p (yt :T | xt ) dxt < ∞ and try

to come up with a backward dynamics; e.g. solve

Xt+1 = ϕ (Xt ,Vt+1) Xt = ϕ1 (Xt ,Vt+1) .

This is incorrect.
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Generalized Two-Filter Smoothing

Generalized Two-Filter smoothing (Briers, D. & Maskell,
2004-2010)

p (xt , xt+1| y1:T ) ∝

forward filter  
p (xt | y1:t )f (xt+1| xt )

backward filter  
p (xt+1| yt+1:T )

p (xt+1)  
artificial prior

where
p (xt+1| yt+1:T ) ∝ p (yt+1:T | xt+1) p (xt+1) .

By construction, we now have integrable p (xt+1| yt+1:T ) which we
can approximate using a backward SMC algorithm targeting
{p (xt+1:T | yt+1:T )}1t=T where

p (xt | yt :T ) ∝ p (xt )
T

∏
k=t+1

f (xk | xk1)
T

∏
k=t

g (yk | xk ) .
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SMC Generalized Two-Filter Smoothing

Forward filter: compute and store {p (xt | y1:t )}Tt=1 using your
favourite SMC.

Backward filter: compute and store
p (xt | yt :T )

T
t=1 using your

favourite SMC.

Combination step: for any t  {1, ...,T} we have

p (xt , xt+1| y1:T ) ∝ p (xt | y1:T )
f (xt+1| xt )
p (xt+1)

p (xt+1| yt+1:t )

∝
N

∑
i=1

N

∑
j=1

f

X
(j)
t+1

X (i )t


p

X
(j)
t+1

 δ
X (i )t ,X

(j)
t+1
(xt , xt+1) .

Cost O

N2T


but O (NT ) through importance sampling (Briers, D.

& Singh, 2005; Fearnhead, Wyncoll & Tawn, 2010) and fast
computational methods (Klaas et al., 2005).
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Convergence Results

Exponentially stability assumption. For any x1, x 1

1
2

 p (xt | y2:t ,X1 = x1) p

xt | y2:t ,X1 = x 1

 dxt  αt for |α| < 1.

Here ϕT denotes SMC estimates obtained using direct, fixed-lag FB
or TF method.

Marginal distribution. If ϕT (x1:T ) = ϕ (xt ), we have for the
standard path-based SMC estimate

lim
N∞


N (ϕT  ϕT ) N


0, σ2T


, A (T  t + 1)  σ2T  A (T  t + 1)

whereas for FB and TF estimates there exists B independent of T s.t.

lim
N∞


N (ϕT  ϕT ) N


0, σ2T


where σ2T  B
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Comparison Direct Method vs FB and TF

Assume the model is stable and we are interested in approximating
ϕT =


ϕ (xt ) p (xt | y1:T ) dxt using SMC.

Method Fixed-lag Direct SMC FB/TF
# particles N N N
cost O (TN) O (TN) O


TN2


,O (TN)

Variance O (1/N) O ((T  t + 1) /N) O (1/N)
Bias  O (1/N) O (1/N)
MSE=Bias2+Var 2 +O (1/N) O ((T  t + 1) /N) O (1/N)

FB/TF provide uniformly “good” approximations of {p (xt | y1:T )}Tt=1
whereas direct method provide only "good" approximation for |T  t|
"small”.

“Fast” implementations FB and TF of computational complexity
O (NT ) outperform other approaches as MSE is O (1/N) whereas it
is O ((T  t + 1) /N) for direct SMC.
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Convergence Results for Smoothed Additive Functionals

Consider now the case where ϕT (x1:T ) = ∑T
t=1 ϕ (xt ) , so that

ϕT =


ϕT (x1:T ) p (x1:T | y1:T ) dx1:T

=
T

∑
t=1


ϕ (xt ) p (xt | y1:T ) dxt

This type of functionals is crucial when performing ML parameter
estimation.
We have for the standard path-based SMC estimate (Poyiadjis, D. &
Singh, 2010)

lim
N∞


N (ϕT  ϕT ) N


0, σ2T


where AT 2  σ2T  AT

2.

For the FB and TF estimates (Del Moral, D. & Singh, 2009), we have

lim
N∞


N (ϕT  ϕT ) N


0, σ2T


where σ2T  CT
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Comparison Direct Method vs FB and TF

Assume we are interested in approximating
ϕT = ∑T

t=1


ϕ (xt ) p (xt | y1:T ) dxt using SMC.

Method Fixed-lag Direct SMC FB/TF
# particles N N N
cost O (TN) O (TN) O


TN2


,O (TN)

Var. O (T/N) O

T 2/N


O (T/N)

Bias T O (T/N) O (T/N)
MSE=Bias2+Var T 22+O (T/N) O


T 2/N


O

T 2/N2



“Naive” implementations FB and TF have MSE of same order as
direct method for fixed computational complexity but MSE is bias
dominated for FB/TF whereas it is variance dominated for Direct
SMC.
“Fast” implementations FB and TF of computational complexity
O (NT ) outperform other approaches as MSE is O


T 2/N2


whereas

it is O

T 2/N


for direct SMC.
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Experimental Results

Consider a linear Gaussian model

Xt = 0.8Xt1 + 0.5Vt , Vt
i.i.d. N (0, 1)

Yt = Xt +Wt , Wt
i.i.d. N (0, 1) .

We simulate 10,000 observations and compute SMC estimates of


ϕT (x1:T ) p (x1:T | y1:T ) dx1:T

for 4 dierent additive functionals
ϕt (x1:t ) = ϕt1 (x1:t1) + ϕ (xt1, xt , yt ) including
ϕ1 (xt1, xt , yt ) = xt1xt , ϕ2 (xt1, xt , yt ) = x2t . [Ground truth can
be computed using Kalman smoother.]

We use SMC over 100 replications on the same dataset to estimate
the empirical variance.
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Empirical Variance for Direct vs FB
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Boxplots of SMC Estimates for Direct vs FB
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Summary

SMC smoothing techniques allow us to “solve” the degeneracy
problem.

SMC fixed-lag smoothing is the simplest one but has non-vanishing
bias dicult to quantify.

SMC FB and SMC TF algorithms provide uniformly “good”
approximations of marginal smoothing distributions contrary to direct
method.

In terms of MSE, only “fast” implementations of SMC FB/TF
provide a gain in terms of MSE.

For direct implementation SMC FB/TF, MSE is of the same order but
SMC FB/TF is bias dominated and direct SMC is variance dominated.
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ML Parameter Estimation in State-Space Models

In most scenarios of interest, the state-space model contains an
unknown static parameter θ  Θ so that

X1  µθ (x1) and Xt | (Xt1 = xt1)  fθ (xt | xt1) .

The observations {Yt}t1 are conditionally independent given
{Xt}t1 and

Yt | (Xt = xt )  gθ (yt | xt ) .

In many applications, we actually only care about θ and would like to
estimate it o-line or on-line.
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Examples

Stochastic Volatility model

Xt = φXt1 + σVt , Vt
i.i.d. N (0, 1)

Yt = β exp (Xt/2)Wt , Wt
i.i.d. N (0, 1)

where θ =

φ, σ2, β


.

Biochemical Network model

Pr

X 1t+dt=x

1
t+1,X

2
t+dt=x

2
t

 x1t , x2t

= α x1t dt + o (dt) ,

Pr

X 1t+dt=x

1
t1,X 2t+dt=x

2
t+1

 x1t , x2t

= β x1t x

2
t dt + o (dt) ,

Pr

X 1t+dt=x

1
t ,X

2
t+dt=x

2
t1

 x1t , x2t

= γ x2t dt + o (dt) ,

with
Yk = X 1k∆T +Wk with Wk

i.i.d. N

0, σ2



where θ = (α, β,γ) .
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Likelihood Function Estimation

Let y1:T being given, the log-(marginal) likelihood is given by

(θ) = log pθ (y1:T ) .

For any θ  Θ, one can estimate (θ) using standard SMC. methods,
variance O (T/N) .

Direct maximization of (θ) dicult as SMC estimate (θ) is not a
smooth function of θ even for fixed random seed.

For dim (Xt ) = 1, we can obtain smooth estimate of log-likelihood
function by using a smoothed resampling step (e.g. Pitt, 2002-2011);
i.e. piecewise linear approximation of Pr (Xt < x | y1:t ) .

For dim (Xt ) > 1, we can obtain estimates of (θ) highly positively
correlated for neigbouring values in Θ (e.g. Lee, 2008).
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Gradient Ascent

To maximise (θ) w.r.t θ, use at iteration k + 1

θk+1 = θk + γk (θ)|θ=θk

where (θ)|θ=θk
is the so-called score vector.

(θ)|θ=θk
can be estimated using finite dierences but more

eciently using Fisher’s identity (e.g. Cappé et al., 2005)

(θ) =

 log pθ (x1:T , y1:T ) pθ (x1:T | y1:T ) dx1:T

where

 log pθ (x1:T , y1:T ) =  log µθ (x1)
+∑T

t=2 log fθ (xt | xt1) +∑T
t=1 log gθ (yt | xt ) .

An alternative is to use IPA (Coquelin, Deguest & Munos, 2009).
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Example: SV Model

Remember that

Xt = θXt1 + σVt , Vt
i.i.d. N (0, 1)

Yt = β exp (Xt/2)Wt , Wt
i.i.d. N (0, 1)

where we assume here that

σ2, β


are known so that θ = φ.

In this scenario

log fθ (xt | xt1) = 
1
2
log

2πσ2




1
2σ2

(xt  θxt1)
2 ,

 log fθ (xt | xt1) =
xt1 (xt  θxt1)

σ2
=
xt1xt

σ2


θx2t1
σ2

,

hence

(θ) =
Eθ


∑T
t=2 Xt1Xt

 y1:T



σ2


θEθ


∑T
t=2 X

2
t1

 y1:T



σ2
.
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Gradient Ascent using SMC

An obvious SMC approximation is given by

θk+1 = θk + γk (θ)

θ=θk

where (θ)

θ=θk

is estimated by your favourite SMC smoothing

technique.

As (θ) is a smoothed additive functional, all previously presented
SMC methods and results do apply; see previous numerical results.

Similarly, it is possible to estimate the observed information matrix
2(θ) using SMC based on Louis identity (e.g. Cappé et al.,
2005) to implement a Newton-Raphson algorithm (Poyadjis, D. &
Singh, 2010).
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ML Parameter Estimation using EM

The Expectation-Maximization (EM) algorithm is a celebrated
alternative to gradient ascent technique.
To maximise (θ) w.r.t θ, the EM uses

θk+1 = argmax Q(θk , θ).

where

Q(θk , θ) =

log pθ(x1:T , y1:T ) pθk (x1:T |y1:T )dx1:T

and we know that
(θk+1)  (θk ).

If pθ(x1:T , y1:T ) is in the exponential family then we have

θk+1 = Λ

T1θk

T



where

θ
T =

  T

∑
t=2

ϕ (xt1, xt , yt )


pθ(x1:T |y1:T )dx1:T
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Example: SV Model

Remember that

Xt = θXt1 + σVt , Vt
i.i.d. N (0, 1)

Yt = β exp (Xt/2)Wt , Wt
i.i.d. N (0, 1)

where we assume here that

σ2, β


are known so that θ = φ.

In this scenario

log fθ (xt | xt1) = 
1
2
log

2πσ2




1
2σ2

(xt  θxt1)
2

= 
1
2
log

2πσ2



x2t
2σ2


θ2x2t1
2σ2

+
θxt1xt

σ2

so that

θk+1 =
Eθk


∑T
t=2 Xt1Xt

 y1:T



Eθk


∑T
t=2 X

2
t1

 y1:T

 .
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EM using SMC

SMC approximation of the EM is direct.

As EM requires computing smoothed additive functionals
θ
T =

 
∑T
t=2 ϕ (xt1, xt , yt )


pθ(x1:T |y1:T )dx1:T , all previously

presented SMC smoothing methods and results do apply.

There is obviously no more guarantee that (θk+1)  (θk ) for finite
N but many positive experimental results; e.g. (Schon, Wills &
Ninness, 2011).
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ML Parameter Estimation using Online Gradient

In many applications, we would like to estimate the parameter on-line.
Recursive maximum likelihood (Titterington, 1984; LeGland & Mevel,
1997) proceeds as follows

θt+1 = θt + γt  log pθ1:t (yt | y1:t1)

where pθ1:t (yt | y1:t1) is computed using θk at time k and
∑t γt = ∞, ∑t γ2t < ∞. Under regularity conditions, this converges
towards a local maximum of the (average) log-likelihood.
Note that

 log pθ1:t (yt | y1:t1) =  log pθ1:t (y1:t ) log pθ1:t1 (y1:t1)

is given by the dierence of two pseudo-score vectors where

 log pθ1:t (y1:t ) :=
 

∑t
k=2  log fθ (xk | xk1)|θk
+  log gθ (yk | xk )|θk


pθ1:t (x1:t | y1:t ) dx1:t .
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ML Parameter Estimation using SMC Online Gradient

SMC approximation follows

θt+1 = θt + γt  log pθ1:t (yt | y1:t1)

where

 log pθ1:t (yt | y1:t1) =  log pθ1:t (y1:t )  log pθ1:t1 (y1:t1)

is given by the dierence of SMC estimates of pseudo-score vectors
(Poyadjis, D. & Singh, 2011).

Asymptotic variance of  log pθ1:t (yt | y1:t1) is uniformly bounded
for FB estimate (Del Moral, D. & Singh, 2011) whereas it increases
linearly with t for direct SMC method.

Major Problem: If we use FB, this is not an online algorithm
anymore as it requires a backward pass of order O (t) to approximate
 log pθ1:t (y1:t ) ...
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Variance of the Gradient Estimate for Direct vs FB
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Figure: Empirical variance of the gradient estimate for standard versus FB
approximations (SV model)
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Online SMC ML Estimation using Direct Approximation
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Figure: N = 10, 000 particles, online parameter estimates for SV model.
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SMC ML Estimation for SV Model using FB
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Figure: N = 50 particles, online parameter estimates for SV model.
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Forward only Smoothing

For the time being, we do not have an online implementation as a
backward pass of length t is required at time t.
It is possible to completely bypass the backward pass to compute
using FB

θ
t =



t
t (x1:t ) pθ (x1:t | y1:t ) dx1:t

where

t (x1:t ) =
t

∑
k=1

 (xk1:k , yk )

using a dynamic programming trick for the “backward” Markov chain
of transition densities {pθ (xk | y1:k , xk+1)} .
Let us introduce the “value” function

V θ
t (xt ) :=


t (x1:t ) pθ (x1:t1| y1:t1, xt ) dx1:t1

then
θ
t =


V θ
t (xt ) pθ (xt | y1:t ) dxt .
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Forward only Smoothing

Forward smoothing recursion

V θ
t (xt ) =

 
V θ
t1 (xt1) + (xt1:t , yt )


pθ (xt1| y1:t1, xt ) dxt1

Proof is trivial

V θ
t (xt ) =


ϕt (x1:t ) pθ (x1:t1| y1:t1, xt ) dx1:t1

=

[ϕt1 (x1:t1) + (xt1:t , yt )] pθ (x1:t2| y1:t2, xt1)

pθ (xt1| y1:t1, xt ) dx1:t1

=

(


ϕt1 (x1:t1) pθ (x1:t2| y1:t2, xt1) dx1:t2
  

V θ
t1(xt1)

+ (xt1:t , yt )) pθ (xt1| y1:t1, xt ) dxt1

Appears implicitly in Elliott, Aggoun & Moore (1996), Ford (1998)
and rediscovered a few times... Presentation follows here (Del Moral,
D. & Singh, 2009).
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SMC Forward only Smoothing

At time t  1, we have pθ (xt1| y1:t1) =
1
N ∑N

i=1 δ
X (i )t1

(xt1) and

V θ
t1


X (i )t1



1iN
.

At time t, compute pθ (xt | y1:t ) = ∑N
i=1W

(i )
t δ

X (i )t
(xt ) and set

V θ
t


X (i )t


=
 V θ

t1 (xt1) + (xt1:t , yt )

pθ


xt1| y1:t1,X

(i )
t


dxt1

=
∑N
j=1 fθ


X (i )t |X

(j)
t1


V θ
t1


X (j)t1


+


X (j)t1,X

(i )
t ,yt



∑N
j=1 fθ


X (i )t |X

(j)
t1

 ,

θ
t =

1
N ∑N

i=1
V θ
t


X (i )t


.

This estimate is exactly the same as the SMC FB estimate,
computational complexity O


N2

.
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ML Parameter Estimation using SMC Online Gradient

At time t  1, we have pθ1:t1 (xt1| y1:t1),

V θ1:t1
t1


X (i )t1


and

 log pθ1:t1 (y1:t1) =
 V θ1:t1

t1 (xt1) pθ1:t1 (xt1| y1:t1) dxt1
and obtained θt .

At time t, use SMC to compute pθ1:t (xt | y1:t ) and

V θ1:t
t


X (i )t


=
 V θ1:t1

t1 (xt1) + (xt1:t , yt )

pθ1:t


xt1| y1:t1,X

(i )
t


dxt1,

 (xt1:t , yt ) =  log fθ (xt | xt1)|θt +  log gθ (yt | xt )|θt

and
 log pθ1:t (y1:t ) =


V θ1:t
t (xt ) pθ1:t (xt | y1:t ) dxt

Parameter update

θt+1 = θt + γt

 log pθ1:t (y1:t )  log pθ1:t1 (y1:t1)
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Online ML Parameter Estimation through EM

Batch EM uses

θk
T =

  T

∑
t=2

ϕ (xt1:t , yt )


pθk (x1:T |y1:T )dx1:T ,

θk+1 = Λ

T1θk

T



Online EM uses

θ1:t
t+1 = γt+1


ϕ (xt :t+1, yt+1) pθ1:t (xt , xt+1|y1:t+1)dxt :t+1

+ (1 γt+1)∑t
k=1


t

∏
l=k+2

(1 γl )


γk+1




ϕ (xk1:k , yk ) pθ1:t (xk1, xk |y1:t+1)dxk1:k

then set θt+1 = Λ

θ1:t
t+1


for {γt}t1 satisfying ∑t γt = ∞ and

∑t γ2t < ∞; e.g. γt = tα with 0.5 < α  1.
Under regularity conditions, this converges towards a local maximum
of the (average) log-likelihood (well not yet proven for HMM)
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Online ML Parameter Estimation through SMC EM

At time t  1, we have pθ1:t1 (xt1| y1:t1),

V θ1:t1
t1


X (i )t1


and

obtained θt .

At time t, use SMC to compute pθ1:t (xt1| y1:t1) and

V θ1:t
t


X (i )t


=
 
(1 γt ) V θ1:t1

t1 (xt1) + γt (xt1:t , yt )


pθ1:t


xt1| y1:t1,X

(i )
t


dxt1,

θ1:t
t =

 V θ1:t
t (xt ) pθ1:t (xt | y1:t ) dxt

Parameter update
θt+1 = Λ


θ1:t
t
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Application to SV Model
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Figure: Online EM algorithm with N = 200 initialized at

φ, σ2, β2


= (0.1, 1, 2);

the true values are

φ, σ2, β2


= (0.8, 0.1, 1).
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Direct SMC vs Forward Smoothing for Online EM

For online gradient techniques, forward smoothing is stable contrary
to the direct method.

Structure of online EM is significantly dierent.

We have seen previously that the MSE for smoothed additive
functionals is of the same order for direct and FB estimates.

Direct method is variance dominated, FB is bias dominated.

We compare experimentally both methods on a simple linear Gaussian
model over 100 runs.
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Experimental Comparisons of Direct vs Forward Smoothing
for online EM
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Figure: Parameter estimates for online EM obtained over 50 runs compared
to ground truth: direct (left) vs forward smoothing (right).
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Summary

SMC smoothing techniques can be used to perform o-line and
on-line ML parameter estimation.

FB estimates for smoothed additive functionals can be computed
using a forward only procedure.

Forward smoothing allows us to implement a degeneracy free on-line
gradient ascent algorithm.

For on-line EM, forward smoothing and direct methods have both
pros and cons with no clear winner.

Bias reduction approaches are currently under study.
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Bayesian Parameter Inference in State-Space Models

Assume we have

Xt | (Xt1 = xt1)  fθ (xt | xt1) ,
Yt | (Xt = xt )  gθ (yt | xt ) ,

where θ is an unknown static parameter with prior p (θ).
Given data y1:t , inference relies on

p ( θ, x1:t | y1:t ) = p ( θ| y1:t ) pθ (x1:t | y1:t )

where
p ( θ| y1:t ) ∝ pθ (y1:t ) p (θ) .

SMC methods apply as it is a standard model with extended state
Zt = (Xt , θt ) where

f (zt | zt1) = δθt1 (θt )  
practical problems

fθt (xt | xt1) , g (yt | zt ) = gθt (yt | xt ) .
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Cautionary Warning

For fixed θ, V [pθ (y1:t )] /p2θ (y1:t ) is in O (t/N).
In a Bayesian context, the problem is even more complex as
p ( θ| y1:t ) ∝ pθ (y1:t ) p (θ) and we have θt = θ for all t so the latent
process does not enjoy mixing properties.

A seemingly attractive idea consists of using MCMC steps on θ; e.g.
(Andrieu, De Freitas & D.,1999; Fearnhead, 2002; Gilks & Berzuini
2001; Storvik, 2002; Carvalho et al., 2010) so as to introduce some
“noise” on the θ component of the state.

When p ( θ| y1:t , x1:t ) = p ( θ| st (x1:t , y1:t )) where st (x1:t , y1:t ) is a
fixed-dimensional of sucient statistics, the algorithm is particularly
elegant but still implicitly relies on SMC approximation of
p (x1:t | y1:t ) so degeneracy will creep in.

As dim (Zt ) = dim (Xt ) + dim (θ), such methods are not
recommended for high-dimensional θ, especially with vague priors.
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SMC with MCMC Step for Parameter Estimation

Given at time t  1, the approximation

p ( θ, x1:t1| y1:t1) =
1
N

N

∑
i=1

δ
θ
(i )
t1,X

(i )
1:t1

 (θ, x1:t1) ,

we update the approximation as follows at time t.

Sample X (i )t  f
θ
(i )
t1


·|X (i )t1


, set X (i )1:t =


X (i )1:t1,

X (i )t

and

p ( θ, x1:t | y1:t ) = ∑N
i=1W

(i )
t δ

θ
(i )
t1,

X (i )1:t

 (θ, x1:t ) ,

W (i )
t ∝ g

θ
(i )
t1


yt | X (

i )
t


.

Resample X (i )1:t  p (x1:t | y1:t ) then sample θ(
i )
t  p


θ| y1:t ,X

(i )
1:t


to

obtain p ( θ, x1:t | y1:t ) =
1
N ∑N

i=1 δ
θ
(i )
t ,X

(i )
1:t

 (θ, x1:t ).
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A Toy Example

Linear Gaussian state-space model

Xt = θXt1 + σV Vt , Vt
i.i.d. N (0, 1)

Yt = Xt + σWWt , Wt
i.i.d. N (0, 1) .

We set p (θ) ∝ 1(1,1) (θ) so

p ( θ| y1:t , x1:t ) ∝ N

θ;mt , σ2t


1(1,1) (θ)

where
σ2t = S

1
2,t , mt = S

1
2,t S1,t

with

S1,t =
t

∑
k=2

xk1xk , S2,t =
t

∑
k=2

x2k1
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SMC with MCMC Step for Parameter Estimation

At time t  1,


θ(
i )
t1,X

(i )
t1,S

(i )
t1


we have

p ( θ, xt1, st1| y1:t1) =
1
N

N

∑
i=1

δ
θ
(i )
t1,X

(i )
t1,S

(i )
t1

 (θ, xt1, st1) .

Sample X (i )t  f
θ
(i )
t1


·|X (i )t1


, set S (i )1,t = S

(i )
1,t1 + X

(i )
t1
X (i )t ,

S (i )2,t = S
(i )
2,t1 +


X (i )t1

2
, W (i )

t ∝ g
θ
(i )
t1


yt | X (

i )
t


and

p ( θ, xt , st | y1:t ) =
N

∑
i=1
W (i )
t δ

θ
(i )
t1,

X (i )t ,S (i )t
 (θ, xt , st ) .

Resample

X (i )t ,S

(i )
t


 p (xt , st | y1:t ) then sample

θ(
i )
t  N


θ;

S (i )2,t

1
S (i )1,t ,


S (i )2,t

1
1(1,1) (θ) to obtain

p ( θ, xt , st | y1:t ) =
1
N ∑N

i=1 δ
θ
(i )
t ,X

(i )
t ,S (i )t

 (θ, xt , st ).
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Illustration of the Degeneracy Problem
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Figure:
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Another Toy Example

Linear Gaussian state-space model

Xt = ρXt1 + Vt , Vt
i.i.d. N (0, 1)

Yt = Xt + σWt , Wt
i.i.d. N (0, 1) .

We set ρ  U(1,1) and σ2  IG (1, 1).
We use particle filter with perfect adaptation and Gibbs moves with
N = 10000; particle learning (Andrieu, D. & De Freitas, 1999;
Carvalho et al., 2010)

We compare to the ground truth obtained using Kalman filter on
states and grid on parameters.
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Another Illustration of Degeneracy for Particle Learning
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Figure: Estimates of p (ρ| y1:t ) and p
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 y1:t


over 50 runs (red) vs ground

truth (blue) for t = 103, 2.103, ..., 5.103 for N = 104.
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Online Bayesian Parameter Estimation

All proposed procedures for online Bayesian parameter estimation are
deficient.

Some artificial dynamics can be introduced but then we do not
approximate {p ( θ, x1:t | y1:t )}t1; e.g. (Liu & West, 2001; Flury &
Shephard, 2010).

Methods based on MCMC steps are elegant but do suer from the
degeneracy problem and provide unreliable approximations.
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Oine Bayesian Parameter Estimation

Given a collection of observations y1:T := (y1, ..., yT ), T being fixed,
inference relies on the posterior density

p (θ, x1:T | y1:T ) = p ( θ| y1:T ) pθ (x1:T | y1:T )

∝ p (θ, x1:T , y1:T )

where

p (θ, x1:T , y1:T ) ∝ p (θ) µθ (x1)
T

∏
t=2
fθ (xt | xt1)

T

∏
t=1
gθ (yt | xt ) .

We show how to address this problem using particle MCMC (Andrieu,
D. & Holenstein, JRSS B, 2010).
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Common MCMC Approaches and Limitations

MCMC Idea: Simulate an ergodic Markov chain {θ (i) ,X1:T (i)}i0
of invariant distribution p ( θ, x1:T | y1:T )... infinite number of
possibilities.

Typical strategies consists of updating iteratively X1:T conditional
upon θ then θ conditional upon X1:T .

To update X1:T conditional upon θ, use MCMC kernels updating
subblocks according to pθ (xt :t+K1| yt :t+K1, xt1, xt+K ).
Standard MCMC algorithms are inecient if θ and X1:T are strongly
correlated.

Strategy impossible to implement when it is only possible to sample
from the prior but impossible to evaluate it pointwise.
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Metropolis-Hastings (MH) Sampling

To bypass these problems, we want to update jointly θ and X1:T .

Assume that the current state of our Markov chain is (θ, x1:T ), we
propose to update simultaneously the parameter and the states using
a proposal

q ( (θ, x1:T )| (θ, x1:T )) = q ( θ| θ) qθ (x

1:T | y1:T ) .

The proposal (θ, x1:T ) is accepted with MH acceptance probability

1
p ( θ, x1:T | y1:T )

p ( θ, x1:T | y1:T )

q ( (x1:T , θ)| (x1:T , θ
))

q

(x1:T , θ

)
 (x1:T , θ)



Problem: Designing a proposal qθ (x1:T | y1:T ) such that the
acceptance probability is not extremely small is very dicult.
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“Idealized” Marginal MH Sampler

Consider the following so-called marginal Metropolis-Hastings (MH)
algorithm which uses as a proposal

q ( (x1:T , θ
)| (x1:T , θ)) = q ( θ| θ) pθ (x


1:T | y1:T ) .

The MH acceptance probability is

1
p ( θ, x1:T | y1:T )

p ( θ, x1:T | y1:T )

q ( (x1:T , θ)| (x1:T , θ
))

q

(x1:T , θ

)
 (x1:T , θ)



= 1
pθ (y1:T ) p (θ)
pθ (y1:T ) p (θ)

q ( θ| θ)
q ( θ| θ)

In this MH algorithm, X1:T has been essentially integrated out.
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Implementation Issues

Problem 1: We do not know pθ (y1:T ) =

pθ (x1:T , y1:T ) dx1:T

analytically.

Problem 2: We do not know how to sample from pθ (x1:T | y1:T ) .

“Idea”: Use SMC approximations of pθ (x1:T | y1:T ) and pθ (y1:T ).
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Sequential Monte Carlo aka Particle Filters

Given θ, SMC methods provide approximations of pθ (x1:T | y1:T ) and
pθ (y1:T ).

At time T , we obtain the following approximation of the posterior of
interest

pθ (x1:T | y1:T ) =
1
N

N

∑
k=1

δ
X (k )1:T

(x1:T )

and an approximation of pθ (y1:T ) is given by

pθ (y1:T ) = pθ (y1)
T

∏
t=2
pθ (yt | y1:t1) =

T

∏
t=1


1
N

N

∑
k=1

gθ


yt |X

(k )
t



if we use fθ (xt | xt1) as a proposal.
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Reminder...

Under mixing assumptions, we have

V [pθ (y1:T )]

p2θ (y1:T )
 Dθ

T
N
.

Under mixing assumptions, we also have

|E [pθ (x1:T | y1:T )] pθ (x1:T | y1:T )| dx1:T  Cθ

T
N

so if I run an SMC method to obtain pθ (x1:T | y1:T ) then
X1:T  pθ (x1:T | y1:T ), unconditionally X1:T  E [pθ ( ·| y1:T )].

Problem: We cannot compute analytically the particle filter proposal
qθ (x1:T | y1:T ) = E [pθ (x1:T | y1:T )] as it involves an expectation w.r.t
all the variables appearing in the particle algorithm...
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“Idealized” Marginal MH Sampler

At iteration i

Sample θ  q ( θ| θ (i  1)).
Sample X 1:T  pθ (x1:T | y1:T ) .

With probability

1
pθ (y1:T ) p (θ)

pθ(i1) (y1:T ) p (θ (i  1))
q ( θ (i  1)| θ)
q ( θ| θ (i  1))

set θ (i) = θ, X1:T (i) = X 1:T otherwise set θ (i) = θ (i  1),
X1:T (i) = X1:T (i  1) .
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Particle Marginal MH Sampler

At iteration i

Sample θ  q ( θ| θ (i  1)) and run an SMC algorithm to obtain
pθ (x1:T | y1:T ) and pθ (y1:T ).

Sample X 1:T  pθ (x1:T | y1:T ) .

With probability

1
pθ (y1:T ) p (θ)

pθ(i1) (y1:T ) p (θ (i  1))
q ( θ (i  1)| θ)
q ( θ| θ (i  1))

set θ (i) = θ, X1:T (i) = X 1:T otherwise set θ (i) = θ (i  1),
X1:T (i) = X1:T (i  1) .
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Validity of the Particle Marginal MH Sampler

Proposition. Assume that the ‘idealized’ marginal MH sampler chain
is ergodic then, under very weak assumptions, the PMMH sampler
chain is ergodic and admits p( θ, x1:T | y1:T ) whatever being N  1.
It is easy to show the simpler result that the PMMH admits
p( θ| y1:T ) as invariant distribution whatever being N  1.
Let U denote all the r.v. introduce to build the SMC estimate then
write pθ (y1:T ) = pθ (y1:T ,U) and from unbiasedness


pθ (y1:T , u) qθ (u) du = pθ (y1:T ) .
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An Incomplete But Trivial Proof

The PMMH targets the distribution

π (θ, u) ∝ p (θ) pθ (y1:T , u) qθ (u)

which satisfies
π (θ) = p( θ| y1:T ).

The PMMH sampler uses as a proposal

q ( (θ, u)| (θ, u)) = q ( θ| θ) qθ (u
)

and

π(θ,u)
π(θ,u)

q( (θ,u)|(θ,u))
q( (θ,u)|(θ,u)) =

p(θ)pθ (y1:T ,u)qθ (u
)

p(θ)pθ(y1:T ,u)qθ(u)
q( θ|θ)qθ(u)
q( θ|θ)qθ (u)

= p(θ)pθ (y1:T ,u)
p(θ)pθ(y1:T ,u)

q( θ|θ)
q( θ|θ)

Trivial but deep result: if you plug any unbiased likelihood estimate
within a MCMC scheme, you do not perturb the invariant distribution.
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Explicit Structure of the Target Distribution

Let first consider the case where T = 1.
Proposal distribution

q


θ, k, x (1:N )
1

 θ

= q ( θ| θ)

N

∏
m=1

µθ


x (m)1


W (k )
1

  
qθ (u)

Target distribution

π̃


θ, k, x (1:N )
1


∝ p (θ)

1
N

N

∑
m=1

gθ


y1| x

(m)
1



  
pθ(y1)

N

∏
m=1

µθ


x (m)1


W (k )
1

We have already shown

π̃


θ, k, x (1:N )
1



qN


θ, k, x (1:N )
1

 θ
 = p (θ)

q ( θ| θ)
pθ (y1)
pθ (y1)
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Explicit Structure of the Target Distribution

The target is given by

π̃


θ, k, x (1:N )
1


∝ p (θ)


N

∑
m=1

gθ


y1| x

(m)
1

 N

∏
m=1

µθ


x (m)1


W (k )
1

but W (k )
1 = gθ


y1| x

(k )
1


/


∑N
m=1 gθ


y1| x

(m)
1


.

Hence, we can actually rewrite the target as

π̃N


θ, k, x (1:N )
1


=
p


θ, x (k )1

 y1


N

N

∏
m=1;m =k

µθ


x (m)1


.

This shows that we are able to sample from p ( θ, x1| y1) and not only
its marginal p ( θ| y1) .
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Sampling from the Target Distribution

To sample from this target distribution

Sample K from a uniform distribution on {1, ...,N}.
Sample


θ,X (K )1


from p ( θ, x1 | y1). (We do not know how to do this,

this is why we use MCMC).

Sample X (m)1  µθ (x1) for m = K .
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Explicit Structure of the Target Distribution

This construction can be extended to the case T > 1.

To sample from this target distribution

Sample indexes from a uniform distribution on {1, ...,N}T

corresponding to an ancestral line.
Sample θ and X1:T for this ancestral line from p ( θ, x1:T | y1:T ). (We
do not know how to do this, this is why we use MCMC).

Run a conditional SMC algorithm compatible with X1:T and its
ancestral lineage; see (Andrieu, D. & Holenstein, 2010).
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Conditional SMC

Figure: Example of N  1 = 4 ancestral lineages generated by a conditional SMC
algorithm for N = 5,T = 3 conditional upon X 21:3 and B

2
1:3
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“Idealized” Gibbs Sampler

To sample from p ( θ, x1:T | y1:T ), an MCMC strategy consists of using
the following block Gibbs sampler.

At iteration i

Sample X1:T (i)  pθ(i1) (x1:T | y1:T ).

Sample θ (i)  p ( θ| y1:T ,X1:T (i)) .

Problem: We do not know how to sample from pθ (x1:T | y1:T ).

Naive particle approximation where X1:T (i)  p (x1:T |y1:T , θ (i)) is
substituted to X1:T (i)  p (x1:T |y1:T , θ (i)) is obviously incorrect.
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Particle Gibbs Sampler

At iteration i

Sample θ (i)  p (θ|y1:T ,X1:T (i  1)).
Run a conditional SMC algorithm for θ (i) consistent with
X1:T (i  1) and its ancestral lineage.
Sample X1:T (i)  p (x1:T |y1:T , θ (i)) from the resulting
approximation (hence its ancestral lineage too).

Proposition. Assume that the ‘ideal’ Gibbs sampler chain is ergodic
then under very weak assumptions the particle Gibbs sampler chain is
ergodic and admits p ( θ, x1:T | y1:T ) as an invariant distribution for
any N  2.

A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Computation Feb. 2015 119 / 126

Nonlinear State-Space Model

Consider the following model

Xt =
1
2
Xt1 + 25

Xt1
1+ X 2t1

+ 8 cos 1.2t + Vt ,

Yt =
X 2t
20
+Wt

where Vt  N

0, σ2v


, Wt  N


0, σ2w


and X1  N


0, 52


.

Use the prior for {Xt} as proposal distribution.
For a fixed θ, we evaluate the expected acceptance probability as a
function of N.
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Average Acceptance Probability
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Average Acceptance Probability
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Inference for Stochastic Kinetic Models

Two species X 1t (prey) and X
2
t (predator)

Pr

X 1t+dt=x

1
t+1,X

2
t+dt=x

2
t

 x1t , x2t

= α x1t dt + o (dt) ,

Pr

X 1t+dt=x

1
t1,X 2t+dt=x

2
t+1

 x1t , x2t

= β x1t x

2
t dt + o (dt) ,

Pr

X 1t+dt=x

1
t ,X

2
t+dt=x

2
t1

 x1t , x2t

= γ x2t dt + o (dt) ,

with
Yk = X 1k∆T +Wk with Wk

i.i.d. N

0, σ2


.

We are interested in the kinetic rate constants θ = (α, β,γ) a priori
distributed as (Boys et al., 2008; Kunsch, 2011)

α  G(1, 10), β  G(1, 0.25), γ  G(1, 7.5).

MCMC methods require reversible jumps, Particle MCMC requires
only forward simulation.
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Experimental Results
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Autocorrelation Functions
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Autocorrelation of α (left) and β (right) for the PMMH sampler for
various N.
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Summary

Oine Bayesian parameter inference is feasible by using SMC
proposals within MCMC.

This approach does not suer from degeneracy problem and N scales
roughly linearly with T .

Particle MCMC allow us to perform Bayesian inference for dynamic
models for which only forward simulation is possible.

Computationally intensive but several implementations on GPU
already available and applications in control, ecology, econometrics,
biochemical systems, epidemiology, water resources research etc.

Selection of N is a key issue and some guidelines are available (D.,
Pitt, Deligiannidis & Kohn, 2014).
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