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Advances in Random Forests

“A Random Forest Guided Tour” (2015)

Gérard Biau, Erwan Scornet

Lots of practical evidence that random 
forests perform well…
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Comparisons

“Do we Need Hundreds of Classifiers to Solve 
Real World Classification Problems?” Jpurnal of 
Machine Learning Research, 2014

Fernandez-Delgado, Cernadas, Barro, Amorim

Compared 179 classifiers on 121 datasets, 

“The classifiers most likely to be the bests are 
the random forest (RF) versions” (SVM with 
Gaussian kernel second best)



Hal Varian (Google)

“Big Data: New Tricks for Econometrics” (2014)

Journal of Economic Perspectives

Cites a conference presentation by Jeremy 
Howard and Mike Bowles (2012), who claim 
“ensembles of decision trees (often known as 
‘Random Forests’) have been the most successful 
general-purpose algorithm in modern times.” 



Advances in Random Forests

“A Random Forest Guided Tour” (2015)

Gérard Biau, Erwan Scornet

Lots of practical evidence that random 
forests perform well… much less theory
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Theory

Random Forests
Machine Learning (2001)
Leo Breiman

Upper bound on generalization error in 
terms of strength and correlation of 
individual trees.
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Earyly results (Breiman 2001)

Idea: most of the trees are good for most of 
the data and make mistakes in different 
places

More formally (Breiman, 2001) the trees have
• high strength
• low correlation
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Theory

Analyzing Bagging 
Annals of Statistics (2002)
Peter Bühlmann and Bin Yu 

Theoretical results on variance reduction, 
also subsampling instead of bootstrap 
samling
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Theory

Random Forests and Adaptive Nearest 
Neighbors
JASA (2006)
Lin and Jeon

Show that random forests are like nearest 
neighbor classifiers with  clever metric
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Theory

Asymptotic distribution of random forests:

Biau and Devroye (2010)
Denil et al. (2003)
Meinshausen (2006)
Biau et al. (2008)
Biau (2012)
Denil (2013)
Mentch and Hooker (2014)
Wager (2014)
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Theoretical Issues

Hard to prove things without simplifying 
the forest. E.g. Make the splits independent 
of the data.
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Biased Variable Importance

Bias in Random Forest Variable Importance 
Measures: Illustrations, Sources and a solution

BMC Bioinformatics 2007Carolin Strobl et al.

Bias in variable importance if categorical 
predictors have different numbers of levels 
and/or predictors are mixed categorical and 
continuous (Strobl et al. 2007, Boulesteix 2012)



Joint work with:

Rong Xia
Ph.D., University of Michigan
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Biased Variable Importance

Strobl et al. (2007) report that when predictors 
have unequal scales it 

“severely affects the reliability and 
interpretability of the variable importance 
measure” 



Simulations

• 1000 trees in each forest

• 100 observations in the training set

• 1000 observations in an independent test set

• 100 repetitions

• replace = FALSE for cforest (subsampling)

• default parameters unless otherwise noted



Examples 1 and 2

x1 ~ M(2) Example 1: (main effect)

x2 ~ M(2) y = Bernoulli(p)

x3 ~ M(4) p = .3 if x1 = 0

x4 ~ M(10) p = .7 if x1 = 1 

x5 ~ U(0, 1) Example 2: (interaction)

x6 ~ N(0, 1) y = 1 if x1 = x2

y = 0 otherwise

M is multinomial



% Error rates Example 1

m

random
forest

cforest random
forest

cforest

mean SE

1 39,1 45,1 0,4 0,8

2 41,2 39,3 0,4 0,9

3 41,6 35,4 0,4 0,9

4 41,8 32,9 0,4 0,7

5 42,1 31,7 0,4 0,5



% Error rates Example 2

m

random
forest

cforest random
forest

cforest

mean SE

1 17,7 49,8 0,5 0,2

2 24,8 48,7 0,5 0,5

3 36,1 47,1 0,6 0,9

4 40,3 44,8 0,5 1,2

5 42,2 41,6 0,5 1,6





Examples 3 and 4

x1, x2, …, x6  ~ N(0, 1)

Example 3: (main effect)

y = 0 if x1 > 0

y = 1 otherwise  

Example 4: (interaction)

y = 0 if x1*x2 > 0

y = 1 otherwise 



% Error rates example 3

mtry

random
forest

cforest random
forest

cforest

mean SE

1 0,61 13,86 0,05 2,10

2 0,45 2,42 0,04 0,72

3 0,43 1,21 0,04 0,13

4 0,41 1,10 0,04 0,12

5 0,41 1,06 0,04 0,12



% Error rates example 4

mtry

random
forest

cforest random
forest

cforest

mean SE

1 28,5 50,0 0,4 0,1

2 21,8 49,8 0,5 0,2

3 17,6 48,8 0,6 0,4

4 14,7 48,0 0,7 0,5

5 13,1 47,0 0,7 0,7





Extensions

• Weighted random forests (Winham et al.  
2013)

• Online forests (various authors, starting in 
2009)

• Survival forests (Ishwaran, 2008)

• Quantile forests (Meinshausen, 2006)

• One class random forests (Desir, 2013)

• Bayesian forests (Chipman et al. 2008)



Extensions

• Weighted random forests (Winham et al.  
2013)

• Online forests (various authors, starting in 
2009)

• Survival forests (Ishwaran, 2008)

• Quantile forests (Meinshausen, 2006)

• One class random forests (Desir, 2013)

• Bayesian forests (Chipman et al. 2008)



Weighted Random Forests

Interested in genetics of complex disease and 
found that for very wide problems RF didn’t do 
very well at detecting interactions (very unlikely 
to split on the interacting variables).

• Incorporate tree-level weights to emphasize 
more accurate trees. 

• Can outperform RF in high-dimensional data.

• The improvements are modest



Weighted Random Forests

1. Split into 75% training set and 25% testing 
set.

2. Fit usual RF to the training set.

3. Use oob data to get a weight for each tree 
(lower weights for trees with high oob
prediction error). Wt = 1/rank(PEt)

4. Pass the test set down the forest and use the 
weights from step 3 to do a weighted 
aggregation.



Problem

• The OOB error rate is high if the tree is very 
bad, OR if there are hard points in the OOB 
data. 

• So we are upweighting the trees which have 
the hard points  in the bootstrap sample.

• Why should this be a good idea?



Alternative

1. Split into 75% training set and 25% testing 
set.

2. Do 10-fold crossvalidation on the training set:

– Fit a random forest to the 90% 

– Get weights based on the other 10%

– Keep the best Ntree/10 trees, discard the rest

3. Combine the Ntree trees to give a final forest 

4. Predict on the test set.



Results

No better than usual random forests!





Why?

Maybe like boosting: emphasize the trees that 
focus on the hard parts of the data








