Joint work with:

Rong Xia University of Michigan

Advances in Random Forests

"A Random Forest Guided Tour" (2015) Gérard Biau, Erwan Scornet

Instead...

- Leo Breiman
- Introduction to trees and random forests
- Open questions
 - randomForest or cforest?
 - -classification with unbalanced classes

Prediction

$$x \longrightarrow$$
 black box $\longrightarrow y$

Goal: accurately predict the response (y) for new predictors (x) using data

And get reliable information about the mechanism in the black box

y categorical \rightarrow "classification" y continuous \rightarrow "regression"

An Important Principle:

"The better the model fits the data, the more sound the inferences about the black box are"

Breiman (2003)

"If all you have is a hammer, every problem looks like a nail" (Breiman)

Data Wizards

"Wizardry in pursuit of the goal of gathering and analyzing data to answer interesting questions" (Breiman, 2003)

Classification and Regression Trees

Pioneers:

- Morgan and Sonquist (1963)
- Breiman, Friedman, Olshen, Stone (1984) CART
- Quinlan (1993) *C4.5*

A Classification Tree

A Regression Tree

Advantages of Trees

- Work for both classification and regression
- Handle categorical predictors naturally
- No formal distributional assumptions
- Can handle highly non-linear interactions and classification boundaries
- Handle missing values in the variables

Disadvantages: inaccuracy, instability

Random Forests

Take a bootstrap sample from the data Fit a classification or regression tree

Repeat

At each node:

- 1. Select *mtry* variables **at random** out of all *M* possible variables (independently at each node)
- 2. Find the best split on the selected *mtry* variables
- 3. Grow the trees big

Combine by

- voting (classification)
- averaging (regression)

Random Forests

Take a bootstrap sample from the data Fit a classification or regression tree

Repeat

At each node:

- Select mtry variables at random out of all M possible variables (independently at each node)
- 2. Find the best split on the selected mtry variables
- 3. Grow the trees big

Combine by

- voting (classification)
- averaging (regression)

Random Forests

Idea: most of the trees are good for most of the data and make mistakes in different places

More formally (Breiman, 2001) the trees have

- high strength
- low correlation

Variable Importance

Two measures:

- Gini criterion
 rough-and-ready
- Permutation importance
 - recommended

Advantages of Random Forests

- Usually (a lot) more accurate than trees
- Built-in estimates of accuracy
- Automatic variable selection
- Variable importance
- Work well "off the shelf"
- Handle "wide" data

Disadvantages of Random Forests

• Forests are inscrutable

Disadvantages of Random Forests

• Forests are inscrutable

 Bias in variable importance if categorical predictors have different numbers of levels and/or predictors are mixed categorical and continuous (Strobl et al. 2007, Boulesteix 2012) → cforest

Biased Variable Importance

Strobl et al. (2007) report that when predictors have unequal scales it

"severely affects the reliability and interpretability of the variable importance measure"

Gini Criterion for Classification Splits

- CART and Random Forests use Gini
- Gini is known to favor many-level categoricals and continuous variables over categoricals with only a few levels

Simulations

- 1000 trees in each forest
- 100 observations in the training set
- 1000 observations in an independent test set
- 100 repetitions
- replace = FALSE for cforest
- default parameters unless otherwise noted

Examples 1 and 2

x1 ~ M(2)	Example 1: (main effect)
x2 ~ M(2)	y = Bernoulli(p)
x3 ~ M(4)	p = .3 if x1 = 0
x4 ~ M(10)	p = .7 if x1 = 1
x5 ~ U(0, 1)	Example 2: (interaction)
x6 ~ N(0, 1)	y = 1 if $x1 = x2$
	y = 0 otherwise

M is multinomial

% Error rates example 1

	random forest	cforest	random forest	cforest
mtry	mean		S	E
1	39.1	45.1	.4	.8
2	41.2	39.3	.4	.9
3	41.6	35.4	.4	.9
4	41.8	32.9	.4	.7
5	42.1	31.7	.4	.5

% Error rates example 2

	random forest	cforest	random forest	cforest
mtry	mean		S	E
1	17.7	49.8	0.5	0.2
2	24.8	48.7	0.5	0.5
3	36.1	47.1	0.6	0.9
4	40.3	44.8	0.5	1.2
5	42.2	41.6	0.5	1.6

Examples 3 and 4

x1, x2, ..., x6 ~ N(0, 1)

Example 3: (main effect) y = 0 if x1 > 0 y = 1 otherwise

Example 4: (interaction) y = 0 if x1*x2 > 0 y = 1 otherwise

% Error rates example 3

	random forest	cforest	random forest	cforest
mtry	mean		S	E
1	.61	13.86	.05	2.10
2	.45	2.42	.04	.72
3	.43	1.21	.04	.13
4	.41	1.10	.04	.12
5	.41	1.06	.04	.12

% Error rates example 4

	random forest	cforest	random forest	cforest
mtry	mean		S	E
1	28.5	50.0	.4	.1
2	21.8	49.8	.5	.2
3	17.6	48.8	.6	.4
4	14.7	48.0	.7	.5
5	13.1	47.0	.7	.7

% correct, mtry = 3

	random forest	cforest
Example	% со	rrect
1	80	97
2	98	89
3	100	100
4	100	68

References

Leo Breiman, Random Forests, Machine Learning, 2001, 45:5-32

Anne-Laure Boulesteix et al., Overview of Random Forest Methodology and Practical Guidance with Emphasis on Computational Biology and Bioinformatics, WIREs Data Mining Knowl Disc 2012, 2:493-507

Carolin Strobl et al., *Bias in Random Forest Variable Importance Measures: Illustrations, Sources and a solution,* BMC Bioinformatics 2007, 8:25