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Advances in Random Forests

“A Random Forest Guided Tour” (2015)
Gérard Biau, Erwan Scornet
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Instead…

• Leo Breiman
• Introduction to trees and random forests
• Open questions

– randomForest or cforest?
– classification with unbalanced classes
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Prediction

x y

Goal: accurately predict the response (y) for new 
predictors (x) using data

And get reliable information about the mechanism 
in the black box

y categorical → “classification”
y continuous → “regression”
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black box



An Important Principle:

“The better the model fits the data,
the more sound the inferences about the
black box are”

Breiman (2003)
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Arguably one of the most successful tools of the last 20 years. Why?



“If all you have is a hammer,
every problem looks like a nail”
(Breiman)



Data Wizards

“Wizardry in pursuit of 
the goal of gathering 
and analyzing data to 
answer interesting 
questions” (Breiman, 
2003)
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Classification and Regression Trees
Pioneers:
• Morgan and Sonquist (1963)
• Breiman, Friedman, Olshen, Stone (1984) CART
• Quinlan (1993) C4.5



A Classification Tree

“yes”
go left

660 died 
136 survived

127 died
339 survived

Presenter
Presentation Notes
Split into two daughters
Bottom nodes are “terminal”
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Can get class probabilities at the nodes



A Regression Tree
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Advantages of Trees

• Work for both classification and regression

• Handle categorical predictors naturally 

• No formal distributional assumptions

• Can handle highly non-linear interactions and 
classification boundaries

• Handle missing values in the variables

Disadvantages: inaccuracy, instability
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Random Forests

Take a bootstrap sample from the data
Fit a classification or regression tree 
At each node:

1. Select mtry variables at random out of all M possible variables 
(independently at each node)

2. Find the best split on the selected mtry variables
3. Grow the trees big

Combine by 
• voting (classification) 
• averaging (regression)

Repeat



Random Forests
Take a bootstrap sample from the data
Fit a classification or regression tree 

At each node:
1. Select mtry variables at random out of all 

M possible variables (independently at 
each node)

2. Find the best split on the selected mtry
variables

3. Grow the trees big
Combine by 
• voting (classification) 
• averaging (regression)

Repeat



Random Forests

Idea: most of the trees are good for most of 
the data and make mistakes in different 
places

More formally (Breiman, 2001) the trees have
• high strength
• low correlation
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Variable Importance

Two measures:
• Gini criterion

– rough-and-ready 

• Permutation importance
– recommended
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Advantages of Random Forests

• Usually (a lot) more accurate than trees

• Built-in estimates of accuracy

• Automatic variable selection

• Variable importance

• Work well “off the shelf”

• Handle “wide” data
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Disadvantages of Random Forests

• Forests are inscrutable
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Disadvantages of Random Forests

• Forests are inscrutable

• Bias in variable importance if categorical 
predictors have different numbers of levels 
and/or predictors are mixed categorical and 
continuous (Strobl et al. 2007, Boulesteix
2012)         cforest
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Biased Variable Importance

Strobl et al. (2007) report that when predictors 
have unequal scales it 

“severely affects the reliability and 
interpretability of the variable importance 
measure” 



Gini Criterion for Classification Splits
• CART and Random Forests use Gini
• Gini is known to favor many-level categoricals

and continuous variables over categoricals
with only a few levels



Simulations

• 1000 trees in each forest

• 100 observations in the training set

• 1000 observations in an independent test set

• 100 repetitions

• replace = FALSE for cforest

• default parameters unless otherwise noted



Examples 1 and 2

x1 ~ M(2) Example 1: (main effect)
x2 ~ M(2) y = Bernoulli(p)
x3 ~ M(4) p = .3 if x1 = 0
x4 ~ M(10) p = .7 if x1 = 1 
x5 ~ U(0, 1) Example 2: (interaction)
x6 ~ N(0, 1) y = 1 if x1 = x2

y = 0 otherwise
M is multinomial



% Error rates example 1

mtry

random
forest

cforest random
forest

cforest

mean SE
1 39.1 45.1 .4 .8
2 41.2 39.3 .4 .9
3 41.6 35.4 .4 .9
4 41.8 32.9 .4 .7
5 42.1 31.7 .4 .5



% Error rates example 2

mtry

random
forest

cforest random
forest

cforest

mean SE
1 17.7 49.8 0.5 0.2
2 24.8 48.7 0.5 0.5
3 36.1 47.1 0.6 0.9
4 40.3 44.8 0.5 1.2
5 42.2 41.6 0.5 1.6





Examples 3 and 4

x1, x2, …, x6  ~ N(0, 1)

Example 3: (main effect)
y = 0 if x1 > 0
y = 1 otherwise  

Example 4: (interaction)
y = 0 if x1*x2 > 0
y = 1 otherwise 



% Error rates example 3

mtry

random
forest

cforest random
forest

cforest

mean SE
1 .61 13.86 .05 2.10
2 .45 2.42 .04 .72
3 .43 1.21 .04 .13
4 .41 1.10 .04 .12
5 .41 1.06 .04 .12



% Error rates example 4

mtry

random
forest

cforest random
forest

cforest

mean SE
1 28.5 50.0 .4 .1
2 21.8 49.8 .5 .2
3 17.6 48.8 .6 .4
4 14.7 48.0 .7 .5
5 13.1 47.0 .7 .7





% correct, mtry = 3 

Example

random
forest

cforest

% correct
1 80 97
2 98 89
3 100 100
4 100 68
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