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(a) Isotropic (b) Anisotropic (c) Unidirectional

Fig. 1: Sample images of random fields

Figure ?? shows a random realization of a isotropic random field, where it can be seen that there is not a preferred

direction. Then, if we rotate an isotropic random field, it retains the same statistical properties under any rotation.

We now derive the covariances for isotropic random fields to show that an isotropic random field is completely

described by just one quaternion-valued covariance. Let the spatial lag be expressed as ξ = ξ[cos(θ), sin(θ)]T , and

let Sff (k) = Sff (k) be the power spectral density of f(x). Hence, rff (ξ) is given by

rff (ξ) =

∫∫
Sff (k)e

ikT ξ dk =

∫ ∞

0

∫ π

−π

Sff (k)e
ikT ξ kdkdκ

= 2π

∫ ∞

0

Sff (k)J0(kξ) kdk = 2πH−1
0 (Sff , ξ), (26)

where we have used polar coordinates to solve the integral, Jα(·) denotes the Bessel function of the first kind and

order α, and H−1
α (Sff , ·) is the inverse Hankel transform of Sff and order α [19]. Following similar derivations,

the covariances of the Riesz transforms become

rgg(ξ) = 2π cos2(θ)H−1
0 (Sff , ξ)−

cos(2θ)

ξ
H−1

1 (k−1Sff , ξ), (27)

rhh(ξ) = 2π sin2(θ)H−1
0 (Sff , ξ) +

cos(2θ)

ξ
H−1

1 (k−1Sff , ξ), (28)

and, as expected, they fulfill rff (ξ) = rgg(ξ) + rhh(ξ). Finally, the cross-covariances are given by

rfg(ξ) = −2π cos(θ)H−1
1 (Sff , ξ), (29)

rfh(ξ) = −2π sin(θ)H−1
1 (Sff , ξ), (30)

rgh(ξ) = sin(2θ)

[
πH−1

0 (Sff , ξ)−
1

ξ
H−1

1 (k−1Sff , ξ)

]
. (31)

From the previous equations, it is clear that the six covariances are just functions of three quantities, namely

H−1
0 (Sff , ·), H−1

1 (Sff , ·) and H−1
1 (k−1Sff , ·). Therefore, we may characterize, as previously stated, an isotropic

random using one properly selected quaternion-valued covariance, for instance, rmm(i)(ξ).

May 4, 2012 DRAFT

7

(a) Isotropic (b) Anisotropic (c) Unidirectional

Fig. 1: Sample images of random fields

Figure ?? shows a random realization of a isotropic random field, where it can be seen that there is not a preferred

direction. Then, if we rotate an isotropic random field, it retains the same statistical properties under any rotation.

We now derive the covariances for isotropic random fields to show that an isotropic random field is completely

described by just one quaternion-valued covariance. Let the spatial lag be expressed as ξ = ξ[cos(θ), sin(θ)]T , and

let Sff (k) = Sff (k) be the power spectral density of f(x). Hence, rff (ξ) is given by

rff (ξ) =

∫∫
Sff (k)e

ikT ξ dk =

∫ ∞

0

∫ π

−π

Sff (k)e
ikT ξ kdkdκ

= 2π

∫ ∞

0

Sff (k)J0(kξ) kdk = 2πH−1
0 (Sff , ξ), (26)

where we have used polar coordinates to solve the integral, Jα(·) denotes the Bessel function of the first kind and

order α, and H−1
α (Sff , ·) is the inverse Hankel transform of Sff and order α [19]. Following similar derivations,

the covariances of the Riesz transforms become

rgg(ξ) = 2π cos2(θ)H−1
0 (Sff , ξ)−

cos(2θ)

ξ
H−1

1 (k−1Sff , ξ), (27)

rhh(ξ) = 2π sin2(θ)H−1
0 (Sff , ξ) +

cos(2θ)

ξ
H−1

1 (k−1Sff , ξ), (28)

and, as expected, they fulfill rff (ξ) = rgg(ξ) + rhh(ξ). Finally, the cross-covariances are given by

rfg(ξ) = −2π cos(θ)H−1
1 (Sff , ξ), (29)

rfh(ξ) = −2π sin(θ)H−1
1 (Sff , ξ), (30)

rgh(ξ) = sin(2θ)

[
πH−1

0 (Sff , ξ)−
1

ξ
H−1

1 (k−1Sff , ξ)

]
. (31)

From the previous equations, it is clear that the six covariances are just functions of three quantities, namely

H−1
0 (Sff , ·), H−1

1 (Sff , ·) and H−1
1 (k−1Sff , ·). Therefore, we may characterize, as previously stated, an isotropic

random using one properly selected quaternion-valued covariance, for instance, rmm(i)(ξ).

May 4, 2012 DRAFT

7

(a) Isotropic (b) Anisotropic (c) Unidirectional

Fig. 1: Sample images of random fields

Figure ?? shows a random realization of a isotropic random field, where it can be seen that there is not a preferred

direction. Then, if we rotate an isotropic random field, it retains the same statistical properties under any rotation.

We now derive the covariances for isotropic random fields to show that an isotropic random field is completely

described by just one quaternion-valued covariance. Let the spatial lag be expressed as ξ = ξ[cos(θ), sin(θ)]T , and

let Sff (k) = Sff (k) be the power spectral density of f(x). Hence, rff (ξ) is given by

rff (ξ) =

∫∫
Sff (k)e

ikT ξ dk =

∫ ∞

0

∫ π

−π

Sff (k)e
ikT ξ kdkdκ

= 2π

∫ ∞

0

Sff (k)J0(kξ) kdk = 2πH−1
0 (Sff , ξ), (26)

where we have used polar coordinates to solve the integral, Jα(·) denotes the Bessel function of the first kind and

order α, and H−1
α (Sff , ·) is the inverse Hankel transform of Sff and order α [19]. Following similar derivations,

the covariances of the Riesz transforms become

rgg(ξ) = 2π cos2(θ)H−1
0 (Sff , ξ)−

cos(2θ)

ξ
H−1

1 (k−1Sff , ξ), (27)

rhh(ξ) = 2π sin2(θ)H−1
0 (Sff , ξ) +

cos(2θ)

ξ
H−1

1 (k−1Sff , ξ), (28)

and, as expected, they fulfill rff (ξ) = rgg(ξ) + rhh(ξ). Finally, the cross-covariances are given by

rfg(ξ) = −2π cos(θ)H−1
1 (Sff , ξ), (29)

rfh(ξ) = −2π sin(θ)H−1
1 (Sff , ξ), (30)

rgh(ξ) = sin(2θ)

[
πH−1

0 (Sff , ξ)−
1

ξ
H−1

1 (k−1Sff , ξ)

]
. (31)

From the previous equations, it is clear that the six covariances are just functions of three quantities, namely

H−1
0 (Sff , ·), H−1

1 (Sff , ·) and H−1
1 (k−1Sff , ·). Therefore, we may characterize, as previously stated, an isotropic

random using one properly selected quaternion-valued covariance, for instance, rmm(i)(ξ).

May 4, 2012 DRAFT

Isotropic, anisotropic & unidirectional random fields.
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Examples

Topography of Venus.
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Examples

Point patterns of tree locations for hickory and maple.
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Examples

Matérn random field.
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Random Fields

Random field

Stochastic object.

Definition (Random Field)

A random field G (x) is a stochastic process where G (x) is vector-valued realisation
with dimension p and x has dimension d then G is a (d , p) random field.

We should mention Kolmogorov’s extension theorem, that relates the
distribution of a finite sample to that of the process.

Definition (Gaussian Random Field)

A Gaussian random field G (x) is a collection of p-variate random vectors for each
value of x, whose mean function takes the form µG (x) and

ΣGG (x1, x2) = E
{
(G (x1)− µ(x1))(G (x2)− µ(x2))

T
}
,

where any p-variate set of samples has a multivariate Gaussian distn.
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Random Fields

Isotropic Random field

What is an isotropic Gaussian spatial process?

Definition (Gaussian Homogeneous Random Field)

G (x) is a Gaussian Homogeneous Random Field if it is a Gaussian Random Field,
the mean is constant and ΣGG (x1, x2) only depends on x1 − x2, or equivalently
ΣGG (x1, x2) = CGG (x1 − x2).

Definition (Gaussian Isotropic Homogeneous Random Field)

G (x) is a Gaussian Isotropic Homogeneous Random Field if it is a Gaussian
Homogeneous Random Field, the mean is constant and ΣGG (x1, x2) only depends
on ∥x1 − x2∥, or equivalently ΣGG (x1, x2) = CGG (∥x1 − x2∥).

These assumptions may seem arbitrary. Homogeneity is the spatial equivalent of
stationarity; isotropy enforces additional symmetry.
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Random Fields

A special class of Matérn random fields

Are there any examples of (Gaussian) random fields? One example is to take with
ν, ρ, σ2 ∈ R+

CGG (h) = σ2 2
1−ν

Γ(ν)

(√
2ν

∥h∥
ρ

)ν

Kν

(√
2ν

∥h∥
ρ

)
, (1)

where Kν(·) is a Bessel function of the second kind.

The Matern model is very popular in geophysics.

It monotonically decays in its argument. The covariance corresponds to the
spectral density of

SGG (k) = σ2 4πΓ(ν + 1)(2ν)ν

Γ(ν)ρ2ν

(
2ν

ρ2
+ 4π2∥k∥2

)−ν−1/2

, k ∈ R2. (2)

It can be hard to estimate both ν and ρ in this model, see [21], and also [14].
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Random Fields

Anisotropic Matérn random fields

Assume you wish to incorporate anisotropy in the Matérn model following [11].

We introducing the deformation matrix D and replacing ∥k∥2 by kTDk.

The new spectrum takes the form

SGG (k) = σ2 4πΓ(ν + 1)(2ν)ν

Γ(ν)ρ2ν

(
2ν

ρ2
+ 4π2kTDk

)−ν−1/2

, k ∈ R2. (3)

We assume that the matrix D admits a spectral representation of

D = R−θΛRθ,

where Λ is diagonal.

As λmax/λmin changes the degree of anisotropy changes.
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Isotropic (λmax = λmin), anisotropic (λmax > λmin) & unidirectional
(λmax >> λmin) random fields.
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Random Fields

Probabilistic symmetries

Kallenberg [15,6] discusses the notion of probabilistic symmetries more broadly.

Note that it consists of the property for the distribution of the infinite
dimensional object (stationarity, cyclo-stationarity, contractability,
exchangeability, isotropy) and the action itself (temporal shifts, periodic
temporal shifts, contractions, permutations, rotations).

We know about intrinsic representations that follow from these assumptions,
e.g. the spectral representation, Aldous–Hoover etc.

The representation is useful as it helps us model the intrinsic random object.

There are issues when dealing with finite samples as the symmetry refers to
the process, not the finite sample. Cyclo-stationarity and finitely
exchangeable (extendable...) sequences are a way to acknowledge finiteness.
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Random Fields

Spectral Distribution Theorem

OK, so assuming just homogeneity of the underlying spatial process we get the
d-dimensional spectral representation theorem.

Theorem (Spectral distribution theorem [1])

A continuous function C : R 7→ C is non-negative definite function (i.e. a
covariance function) if and only if there exists a finite measure S (I )(·) on the Borel
σ–field such that

C (x) =

∫

Rd

e ix
T k dS (I )(k). (4)

For one dimension we characterised the spectral density into three components,
we are not doing that here.
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Random Fields

Spectral Representation Theorem

We now can use this distribution theorem to obtain:

Theorem (Spectral representation theorem [1])

Let S (I )(·) be a finite measure and Z a complex S (I )(·)–noise. Then the complex
valued random field

Y (x) = µ+

∫

Rd

e ix
T k dZ (k) (5)

has covariance

C (x, y) =

∫

Rd

e i(x−y)T k dS (I )(k). (6)

and so is a homogeneous random field. Furthermore, to every mean square
continuous, centered, (Gaussian) stationary random field Y with covariance
function C and spectral measure S (I )(·) there corresponds a complex (Gaussian)
S (I )(·)-noise Z such that (5) holds in mean square for each x. In both cases, Z is
called the spectral process corresponding to Y .
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Sampling

Sampling
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Sampling

Recording spatial phenomena

Any process we record has to be sampled or observed. In signal processing this is
called sampling. Signal processing sampling refers to the spatial sampling design,
not sampling in the statistical sense of a sampling distribution.

We can sample spatial regions by the aggregate effect for the region Ω with
boundary δΩ.

We can sample spatial regions by putting a regular grid with sampling period
∆1 > 0 and ∆2 > 0 in a region Ω.

We can sample locations uniformly at random inside Ω.

Ω can be a tensor product of regions, or completely irregular.
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Sampling

Recording spatial phenomena
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Sampling

Asymptotics

Normally we are interested in what happens for large samples of observations. In
space this now comes with many potential choices.

We sample Y (x) at locations xi ∈ Ω with boundary δΩ.

We assume we observe Y (x) at N points. One potential is to let N → ∞.
Gaussian limits should happen.

We can decide if |Ω| is fixed or growing with N. This leads to fixed domain
(see [20] or [21]) or growing domain asymptotics [13].

In fixed domain asymptotics we are getting more and more high frequency
information about Y (x) (with some caveats).

In growing domain asymptotics we are getting more highly resolved frequency
information.

Some parameters are not consistently estimated with some choices of
sampling domains [20,21], and asymptotic growth schemes [22].
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Kriging

Kriging
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Kriging

Kriging

Kriging is a method for interpolating spatial data.

This is based on knowing the covariance structure that generated the data,
so normally this has to be estimated.

Suppose that we observe a random field {Y (x)} at locations x1, . . . , xn and
wish to predict the value of the field at another location, x0, say.

We collect the observations in vector Y =
(
Y (x1) . . . Y (xn)

)T
.

Thus we take
Ŷ (x0) = λ+ λTY.

To get a good choice of λ and λ we minimize that mean square prediction.
We define µ(x0) = E{Y(x0)}, C0 = C (x0, x0), p = Cov{Y,Y (x0)} and
P = Cov{Y,YT}. We find

λ = P−1p, λ = µ(x0)− λTp.

This determines our predictor Ŷ (x0) if the covariance is known, otherwise a
covariance family is chosen and its parameters estimated.
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Spectral Inference

Spectral Inference
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Spectral Inference

Inference

Our first idea for making inferences might be to evaluate the log-likelihood.
As long as the models we are interested in have a covariance function
C (h;θ), enumerating the covariance matrix of the same C (θ) we can
(theoretically) evaluate:

ℓ(θ) = −1

2
log |C (θ)| − 1

2
(Y − µ)TC−1(θ)(Y − µ). (7)

We can then for Gaussian data determine the maximum likelihood
estimator [16].

Unfortunately the matrix inversion is prohibitive.

We need an appropriate choice of quasi–likelihood.
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Spectral Inference

Inference I

We can transform this log-likelihood to the spectral domain.

This means we replace the log-likelihood of (7) with an approximation.

This approximation is based on the form of circulant matrices, but using an
approximation rather than the exact form.

We could also look at the exact likelihood of the DFT of a Gaussian sample.
This would have a different variance, and some covariance.

We start by defining the tapered DFT:

Jl(k) =
∑

x∈D
hl(x)e

−ixT k. (8)

The l notation is used for non-parametric estimation, and will be replaced by
a 0 in this section.

sofia.olhede@epfl.ch (EPFL) Dependence in Space & Time February 2, 2024 26 / 59



Spectral Inference
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Figure: Irregular region spatial tapering from [12].
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Spectral Inference

Non-parametric inference

We can define raw spectral estimates from the multitaper method.

The simplest multitaper estimate is

Ŝ (mt)(k) =
1

K

K−1∑

l=0

Ŝ
(d)
l (k).

We can determine its expectation:

E
{
Ŝ (mt)(k)

}
=

1

K

K−1∑

l=0

E
{
Ŝ
(d)
l (k)

}

=
1

K

K−1∑

l=0

∫ 1
2

− 1
2

Hl(f − f ′)S(f ′)df ′

=

∫ 1
2

− 1
2

H(f − f ′)S(f ′)df ′

We call H(k) = 1
K

∑K−1
l=0 Hl(k) the average kernel.
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Spectral Inference

We can note that

Var
{
Ŝ (mt)(k)

}
≈ S2(k)

K

As the dimensions increase, the number of degrees of freedom balloon, and
so bias inevitably dwarfs variance.
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Spectral Inference

Parametric Inference II

We define the Whittle log-likelihood:

ℓW (θ) = −
∑

k∈J

{
log |S(k)|+ |J0(k)|2

S(k)

}
. (9)

This approximates the Gaussian likelihood with N logN computation time.

As long as {J0(k)} is jointly Gaussian, then we just need the mean and
covariance.

Guillaumin et al. [13] showed there was no loss of rate by ignoring the
covariances.

The main problem for d = 2 and higher is that E{|J0(k)|2} ≠ S(k) (even for
large samples). The boundary bias for large samples is the dominant error
(not the variance). The trick is to replace S(k) by its effective equivalent
S(k), leading to a rate-optimal procedure with N logN computation time.
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Spectral Inference

This method also works for inhomogeneous spatial models, as long as the
spatial covariance C (h;θ) can be enumerated, and the sampled process
satisfies Significant Correlation Contribution.

This ensures the correlation is not too strong,

The difference of the sampled spectra over all frequencies is significant.

[13] states these conditions formally.

It is important to appreciate the differences between one dimension and
higher. It is necessary to replace S(k) with the expected periodogram

Sn(k;θ) =
(2π)−d

∑
s∈J g2

s

{fX ( · ;θ) ∗ Fn(·)}(k) (10)

=
(2π)−d

∑
s∈J g2

s

∫

IRd
fX (k− k′;θ)Fn(k

′) dk′,

where

Fn(k) = n−1

∣∣∣∣∣
∑

s∈J
gs exp(ik · s)

∣∣∣∣∣

2

, k ∈ IRd . (11)
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Intrinsic Random Functions

Intrinsic Random Functions
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Intrinsic Random Functions

Intrinsic random functions

When we discussed the characteristics of temporal processes we talked about
three typical non-stationary mechanisms: 1) time-inhomogeneity, 2)
integrated processes, and 3) frequency coupling.

We never discussed integrated processes, just the other two yesterday.

Integrated processes or difference stationary processes have too much
correlation to be stationary. Some of the fractionally integrated processes
also are non-stationary (FARIMA and fBM).

They are common models for time series in econometrics (unit root models
for instance), and part of defining two nonstationary time series whose
difference is stationary (co-integration).
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Intrinsic Random Functions

Intrinsic random functions II

An intrinsic random function is a special case of Gelfand’s [4, 5] generalized
processes with stationary increments, see also Matheron [17].

They can (informally) be thought of as an aggregation of polynomials with
random coefficients and the sum of zero mean stationary processes.

In this instance we do not wish to compute the mean and second order
statistics, as the variance of the Intrinsic Random Function is not finite.

Instead we normally assume that

Var{Y(x0 + h)− Y(x0)}

is finite. It stops being reasonable to calculate the auto-covariance sequence.

Instead for such processes we calculate the semi-variogram [7]:

Γh(x) =
1

2
E
{
(Y(x+ h)− Y(x)})2

}
. (12)

A random field satisfying the intrinsic hypothesis (characterised by its
variogram) is said to follow the intrinsic scheme [7].
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Intrinsic Random Functions

Intrinsic random functions III

If Y (x) is second-order stationary (homogeneous) then we have

Γh(x) = γ(0)− γ((h)),

which is independent of x.

The semi-variogram is bounded as Γh(x) ≤ 2γ(0).

Even if a semi-variogram satisfies the bounds of Cauchy–Schwarz,
non-negativity and its upper bound, there may be no corresponding
process [7].

Why do we care about such processes? Many phenomena in geophysics are
“red”, e.g. have a spectral density supported on low frequencies, and a slowly
varying trend added.
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Intrinsic Random Functions

46 L.M. Kalnins et al. / Earth and Planetary Science Letters 419 (2015) 43–51

Fig. 2. Possible bias in the coherence anisotropy from topography or gravity anisotropy and summary of the continent-wide analysis for mechanical anisotropy. (a) Power 
spectral density of North American topography from the EGM2008 model (Pavlis et al., 2012), analysed in 1400 × 1400 km non-overlapping patches. Geological province 
boundaries are after Vigil et al. (2000). (b) Mechanical anisotropy in the North American lithosphere analysed from topography and Bouguer gravity over the same 25 
windows shown in (a). Black circles identify azimuthally-averaged coherence half-points, and boxed numbers their corresponding wavelengths in km, as in Fig. 1a. Red and 
blue wedges show azimuthal ranges of (high and low, respectively) coherence anisotropy that pass both the mathematical (Fig. 1b) and geophysical (Fig. 1c) significance tests. 
Brown and green lines indicate significant maxima (solid lines) and minima (dashed lines) in the radially averaged power spectral density of the topography and Bouguer 
gravity anomaly, respectively. No values or measurements are plotted when the measurements are deemed insufficiently well determined.

This method minimises the effect of short-wavelength ani-
sotropy on our estimate of Te , and provides a simple measure 
of its uncertainty based on the uncertainty in the wavenumber 
from which it is estimated (half the taper bandwidth, as discussed 
earlier in Section 3). Due to the underlying (and not uncommon) 
assumptions about f 2 and r, we cannot place much faith on the 
absolute determination of the Te using this method. However, our 
focus here is on directional variation, rather than absolute value. 
Since the spatial regions we compare are of equal size, and f 2 and 
r should in most cases be relatively slowly varying and thus rea-
sonably constant within a region, we should still be able detect 
anisotropy in Te . It is possible, however, that a sharp gradient in 
r or f 2 could be wrongly detected as flexural anisotropy rather 
than a change in loading; the trade-off between f 2 and Te , in 
particular, is a well-known and ubiquitous challenge in estimat-
ing Te from coherence (e.g., Banks et al., 2001; McKenzie, 2003;
Simons and Olhede, 2013).

Returning to our worked example, the black circle in Fig. 1a 
marks the “half-point” of the azimuthally averaged coherence; its 
wavelength, λ1/2 = 2π/k1/2, is given in km in the upper left. 
Fig. 1c shows the azimuthally averaged coherence γ 2(k) as a thick 
black curve, with the half-point marked as a vertical line. This is 
contrasted with the curves γ 2(k, θe) retrieved in the directions θe
of the maximum (red) and minimum (blue) that were retained 
by the analysis of the radially averaged coherence γ 2(θ) shown 
in Fig. 1b. The vertical lines show the half-point of each curve, 
with the corresponding Te values shown in the lower left, and we 
can see that the half-points for the anisotropic extrema fall within 
the uncertainty of the isotropic estimate, indicated by the grey 
band. Thus, despite the coherence anisotropy being mathemati-
cally significant, neither the maximum nor the minimum derived 
lithospheric anisotropy is geophysically significant, and our exam-
ple does not robustly indicate anything that can be interpreted as 
actual anisotropy in lithospheric strength.

3.3. Test for bias from anisotropy in gravity or topography

Our third test aims to remove the potential anisotropic bias in-
troduced to the coherence from analysing intrinsically anisotropic 
fields such as topography and gravity: anisotropies in the power-
spectral densities of the individual fields H and G themselves may 
impart anisotropy to the coherence estimate, even when the intrin-
sic behaviour of the lithosphere is isotropic (Simons and Olhede, 
2013; Kirby, 2014). To illustrate, Fig. 2a shows estimates of the 
power-spectral density of the topography in the North American 
continent, formed over 25 non-overlapping square (1400 km on 
the side) patches. Substantial anisotropy is visible to the untrained 
eye. We map the anisotropy in topography and gravity over the 
continent via a radially-averaged azimuthal significance analysis, 
as shown for the coherence in Fig. 1b. Fig. 2b then shows how sig-
nificant directional extrema in topography and gravity align with 
those in the coherence.

Where the directions are clearly aligned, we must consider 
whether the apparent anisotropy in Te is purely an artefact of 
the anisotropy in topography or gravity. We consider the directions 
aligned if the azimuthal ranges for coherence and gravity/topogra-
phy anisotropy overlap; however, for clarity, the azimuthal ranges 
for gravity and topography are not shown in Fig. 2b. Across the 
25 patches shown, four directions will be rejected. However, in 
many geological settings, genuine lithospheric weakness may be 
aligned with structures in the topography/gravity. We have delib-
erately performed this test last to facilitate consideration of this 
possibility. (See the figures on azimuthal bias in the Supplemen-
tary Material for details.)

4. Synthetic tests, multitapers, and wavelets

To test the coherence estimation methods currently widely used 
as well as our proposed significance testing, we perform anisotropy 
analysis on two types of synthetic data, one wholly synthetic and 

Topography of North America.
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Other probabilistic symmetries
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Other probabilistic symmetries

Other probabilistic symmetries

We have discussed translation invariance, and how that leads to the spectral
representation theorem.

We discussed permutation invariance and exchangeability, which lead to the
de Finetti representation in 1-d arrays (sequences).

Other stochastic process representations include the Chaotic representation
theorem for Lévy processes and the predictable representation of Lévy
processes [18].

We are now (briefly) going to discuss random graphs.
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Graphs or network data structures

Graphs or network data structures
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Graphs or network data structures

A network represents interactions between entities (nodes or vertices), where
the presence of an interaction is indicated by an edge.

A network (or graph) G is a pair G = (V ,E ) of sets so that E ⊆ [V ]2. We
refer to the elements of V as the vertices (or nodes) of the graph, and E are
the edges of G , written as V (G ) and E (G ).

A vertex v is incident with an edge e if v ∈ e.

Two vertices are adjacent or neighbours if connected by an edge.
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Graphs or network data structures
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Graphs or network data structures

Labelled graphs or networks.
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Graphs or network data structures

We write a network or a graph as G , which is usually represented by an
adjacency matrix A. The edge–variable Aij where if node i and node j are
linked Aij takes the value unity, otherwise it takes the value zero.

A network can also be represented by a list of edges, an edge list, that just
specifies the existing edges, e.g. {(1, 15), (1, 32), ....}.
We normally assume that |V (G )| = n if not specified otherwise.

A graph H = (V (H),V (H)) is a subgraph of G if V (H) ⊆ V (G ) and
E (H) ⊆ E (G ).
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Graphs or network data structures
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Graphs or network data structures
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Graphs or network data structures
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Graphs or network data structures

Most of the common network models fall in a more general framework of
permutation invariance. Namely, that for most of the enumerated model the
value of i or j contain no information about the model structure. Thus if we
introduce a permutation that remaps all indices, the nature of the model
should not change.

Permutation invariance is a stochastic invariance. What other examples have
you met? (hint: translation & rotation invariance). With what property of a
stochastic process?

Let Π be a permutation on the ordering so that
Π({1, . . . , n}) = {π(1), . . . , π(n)}, and let the repermuted adjacency matrix
be AΠ.

Definition

Permutation-invariance of the distribution holds when Pr(A = a) = Pr(AΠ = a)
for any permutation and any adjacency matrix A. That is, permuting the
adjacency matrix does not change its distribution. Then we say that the
distribution is permutation-invariant.
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Graphs or network data structures

Furthermore this can be related to the underlying array.

Definition

Let E be a suitable space. A sequence of E-valued random variables (Xn)n∈N is
exchangeable if

(Xn)n
d
= (XΠ(n))n ∀Π ∈ Sym(N),

where Sym([n]) is the group of all permutations of [n] and Sym(N) is the group
of all permutations of N.

Note that this is really an assertion about the measure which is the joint law
of the r.v.s (Xn): it is invariant under the action of Sym(N) by the
permutation of coordinates. When E = {0, 1} these were studied by de
Finetti in the 1930’s; for more general E see results by Hewitt and Savage in
the 1950’s.
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Exchangeability
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Exchangeability

Definition (Exchangeable arrays)

More generally, for any k ≥ 1 we can consider an array of E-valued r.v.s (Xe)e∈N(k)

indexed by size-k subsets of N, and say it is (jointly) exchangeable if

(Xe)e
d
= (XΠ(e))e ∀Π ∈ Sym(N), where if e = {n1, . . . , nk} then

Π(e) := {Π(n1), . . . ,Π(nk)}.

General arrays were studied by Hoover, Aldous, Fremlin and Talagrand and
Kallenberg. Finite exchangeability simply puts e in a finite space. A finite
n ×m random matrix A is row-column exchangeable if for n-permutation σ
and m-permutations π

Pr{A11 ∈ N11, A12 ∈ N12, . . . ,Anm ∈ Nnm}
= Pr{Aσ(1)π(1) ∈ N11, Aσ(1)π(2) ∈ N12, . . . ,Aσ(n)π(m) ∈ Nnm},

for all Borel sets N11, . . . ,Nnm.
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Exchangeability

For r > n and q > m the matrix A is called (r , q)-extendible if there are
matrices T, Z and W with

T = (Aij), i = 1, . . . , n, j = m + 1, . . . , q (13)

Z = (Aij), i = n + 1, . . . , r , j = 1, . . . ,m (14)

W = (Aij), i = n + 1, . . . , r , j = m + 1, . . . , q, (15)

such that

A∗ =

(
A T
Z W

)
,

is row-column exchangeable. A matrix that is (r , q) extendible for all r > n
and q > m is called infinitely extensible.

Theorem (Aldous Hoover)

An array A is jointly exchangeable, iff it has the same distribution as

Aij = f (α, ξi , ξj , ζij), 1 ≤ i < j ,

with f : R4 7→ R and some iid random uniform variables α, ξi and ζij .
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Exchangeability

Exchangeable arrays

We can also express this theorem as:

Theorem (Aldous–Hoover)

An array A is jointly exchangeable, iff it has the same distribution as

Aij
iid | ξ,γ
= Bern(fγ(ξi , ξj)), 1 ≤ i < j ,

with f : R2 7→ [0, 1] and some iid random uniform variables γ, ξi .

With only one realization; can only estimate for one γ usually using
stochastic block model. Let us thus remove that notation.

With additional smoothness assumptions on f (x , y) such as Hölder(α);
various averaging strategies for estimation has been proposed using the
stochastic blockmodel e.g. Olhede & Wolfe (2014), Chatterjee (2015), Gao
et al (2015) etc.
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Exchangeability

Probabilistic invariances

This set of lectures covered structured and dependent data.

We started out with 1 dimensional shift invariance, and studied stationary
sequences.

We acknowledged that they may have been sampled a process with countably
many entries.

We then looked at 2 dimensional shift invariance, and adding on rotational
invariance.

Finally we explored permutation invariance for symmetric arrays.
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