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Models of Non-Stationary Processes

Life is Non-Stationary

Many observed processes are NOT stationary.

Data collected over time has natural windows of stability,

Over a given window there are regions of a degree of smoothness etc,

Non-Stationarity may arise in the mean, i.e. µt or Σ(t1, t2) cannot be
assumed to take a simpler form, even if over a region local stationarity is
observed.

Our intrinsic understanding of the non-stationarity depends on if the
description of the stationary time series.
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Representation in time or frequency. Do first or second order properties look
stationary?
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Models of Non-Stationary Processes

“Experience with real-world data, however, soon convinces one that both
stationarity and Gaussianity are fairy tales invented for the amusement of

undergraduates.”
D. Thomson, Jackknifing Multiple Window Spectra, 1994.
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Models of Non-Stationary Processes

How do we formulate non-stationary models?

We start from stationary representations of the process.

a) Time domain representations of the process, i.e. µ→ µ̃t , and sτ → s̃t,τ .

b) Spectral Representation of the process, i.e. S(f ) → S(t, f ).

c) Wold Representation, MA or AR representation, becomes a time-varying
MA or AR:

Zt − µ =

p∑
j=0

hτ ϵn−τ → Zt − µt =

p∑
j=0

hτ,tϵt−τ (1)

Only in special cases will the auto-covariance, spectrum and Wold
representation admit interpretable objects, and never can you easily swap
between the representations.
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Models of Non-Stationary Processes Global vs Local Time

“Time is connected. And functions of time reflect this fact in their structure, not
only in the tendency towards continuity shown by individual time functions, but

even more obviously in the associated probability structures.”
J. Tukey, Discussion, 1961.
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Models of Non-Stationary Processes Global vs Local Time

What is time?
Time is Global, Time is Relative, and Structured behaviour in time is dependent
or smooth. Thus

Firstly define
s̃t1,t2 = Cov{Zt1 ,Zt2} (2)

This must be a valid auto-covariance sequence (positive semi-definite).

Define global time t = 1
2 (t1 + t2) and local time τ = t2 − t1

To make sense as a local function defined in τ for fixed t, it must vary
(decay) more rapidly in τ than change in t.

Thus consider:

st,τ = Cov
{
Zt− 1

2 τ
,Zt+ 1

2 τ

}
= s̃t− 1

2 τ,t+
1
2 τ
.
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Models of Non-Stationary Processes Global vs Local Time

Locally Stationary (a là Mallat) Processes [33]

st,τ is only a function of τ if the process is stationary.

Locally st,τ is not changing with t. Let l(t ′) be the local interval of
approximate stationarity. Assume for all t1 ∈ [t ′ − l(t ′), t ′ + l(t ′)],
s̃t1,t2 ≈ st′,t1−t2 (rate of change of correlation).

Let d(t) be the local decorrelation length. For t1 ∈ [t ′ − l(t ′), t ′ + l(t ′)],
s̃t1,t2 ≈ 0 if |t1 − t2| ≥ d(t ′).

Definition (Locally Stationary Process [33,5])

Locally stationary processes are such for which l(t ′) and d(t ′) can be defined to
satisfy above eqns with

d(t ′) <
l(t ′)

2
. (3)
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Models of Non-Stationary Processes Locally Stationary Processes

Going from Time-Varying Models to Spectral Models [42,46]:

Assuming that ϵt is stationary it possesses a representation of:

ϵt =

∫ 1
2

− 1
2

e2iπftdZϵ(f ), Var(dZϵ(f )) = Sϵ(f ) df .

We can then use (1) to understand the output, it follows that with
ςt(f ) = Ht(f )e

2iπft :

Zt − µt =

p∑
j=0

hτ,tϵt−τ =

p∑
j=0

hτ,t

∫ 1
2

− 1
2

e2iπf (t−τ)dZϵ(f )

=

∫ 1
2

− 1
2

Ht(f )e
2iπftdZϵ(f ) =

∫ 1
2

− 1
2

ςt(f )dZϵ(f ). (4)
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Models of Non-Stationary Processes Locally Stationary Processes

Locally Stationary Processes

Referring to eqn (1), we state

Var(Zt) =

∫ 1
2

− 1
2

|Ht(f )|2Sϵ(f ) df . (5)

This seems to imply that the time-varying spectrum of {Zt} is

St(f ) = |Ht(f )|2Sϵ(f ), (6)

which at time t has “energy” |Ht(f )|2Sϵ(f ) associated with frequency f .

In no way can you make this statement, without further assumptions.
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Models of Non-Stationary Processes Locally Stationary Processes

Locally Stationary Processes II

The problem arises because f need not correspond to “frequency” content.

Revert back to eqn (4). It seems to be saying that e2iπft is given a random
weighting of Ht(f )dZϵ(f ).

What if Ht(f ) = e2iπfo tH̃t(f )?

Thus in general the interpretation of eqn (4) is suspect.

We need to formulate when it is permitted to interpret eqn (6).
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Oscillatory Processes

Oscillatory Processes
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Oscillatory Processes

Oscillatory Processes

We need to understand when eqn (4) is interpretable.

We represent Ht(f ) by

Ht(f ) =

∫ ∞

−∞
e2iπνt dKf (ν). (7)

We denote ςt(f ) an oscillatory function if uniformly in f

argν max|dKf (ν)| = 0 (8)

This ensures that dKf (ν) is sufficiently smooth, and that ςt(f ) is associated
with frequency f . In this case eqn (6) defines the evolutionary spectral
density at time t wrt the family of functions {ςt(f )}.
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Oscillatory Processes

Families of Oscillatory functions

If Zt is stationary and F is the family of complex exponentials then St(f ) is
the sdf.

It is convenient to adopt a standardization of Ht(f ) = 1.

In general there is a wealth of possible choices for families of ςt(f ), denoted
F .

Would like to chose a suitable family F : say to give the least variable Ht(f ).
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Oscillatory Processes

Semi-Stationary Processes [42]

Define BF (f ) by:

BF (f ) =

∫ ∞

−∞
|ν||dKf (ν)|. (9)

Definition (Semi-Stationary Process)

A family F is called semi-stationary if BF (f ) is bounded for all f . In this case the
characteristic width is given by:

BF = sup
f
[BF (f )]

−1 (10)

A process {Zt} is semi-stationary if there exists a semi-stationary family F for
which eqn (4) holds.
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Oscillatory Processes

Locally Stationary (a là Dahlhaus) [14]

Dahlhaus [14,15] has developed theory for locally stationary processes.

Definition (Locally Stationary Process)

A sequence of stationary processes Zt,N is called locally stationary with transfer
function A0(·) and trend µ(·) if there exists a representation

Zt,N = µ
( t

N

)
+

∫ 1
2

− 1
2

A0
t,N(f )e

2iπft dZ(f ), t ∈ [1,N), (11)

where the following conditions are met:
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Oscillatory Processes

(a) dZ(f ) is a stochastic process satisfying a set of cumulant
conditions,
(b) A0

t,N(f ) approximates a continuous function in increasing
N, A(u, f ) and µ(·) is a continuous function.

The smoothness of A(u, f ) guarantees the locally stationary behaviour of the
process.

Various models fit such as uniformly modulated and time-varying MA’s, as
well as, AR’s.

This introduces the important concept of rescaled time, z = t/N.
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Wavelet Models

Wavelet Models
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Wavelet Models

Wavelet Models

Local stationarity was based on time-domain understanding.
Semi-stationarity was based on time-frequency. What about time-scale?

Recall that the 1-D MODWT and IMODWT decomposes a vector
Z = [Zt1 , . . . ,ZtN ]

T . as:

W̃
(Z)
j,t =

Lj−1∑
l=0

h̃◦j,t−lZl mod N , Ṽ
(Z)
j,t =

Lj−1∑
l=0

g̃◦
j,t−lZl mod N

Zt =
J0∑
j=1

N∑
t=0

h̃◦j,t−lW̃
(Z)
j,l +

N∑
t=0

g̃◦
j,t−l Ṽ

(Z)
j,t . (12)
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Wavelet Models

Locally Stationary Wavelet Processes

Can we define a stochastic process starting from eqn (12)?

In a sense eqn (12) is like a IDFT.

The representation of eqn (1) permits all frequencies.

Definition (Locally Stationary Wavelet Process [36])

The LSW processes are a sequence of doubly indexed stochastic processes {Zt,N}
where N = 2J > 1 having the representation in the mean-square sense:

Zt,N =
J∑

j=1

N∑
k=0

h̃◦j,t−kαjkξjk , (13)

where αjk and ξjk are independent random variables.
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Wavelet Models

LSW II
The objects in the theorem satisfy:

E(ξjk) = 0,

Cov(ξjk , ξj′k′) = δjj′δkk′ ,

∀j ≥ 1, ∃Wj(z) that for z ∈ (0, 1) is Lipschitz continuous and satisfies the
following properties∑∞

j=1|Wj(z)|2 <∞ uniformly in z ,

the Lipschitz constants Lj are uniformly bounded and satisfy∑∞
j=1 2

−jLj <∞,

∃Cj so that for any fixed T sup0≤k≤N−1|αjk −Wj(k/N)| ≤ Cj/N and∑∞
j=1 Cj∞.

z = k/N is rescaled time.
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Wavelet Models

LSW III:

We wish to measure the local energy of a LSW process.

Definition (Evolutionary Wavelet Spectrum [36])

The Evolutionary Wavelet Spectrum wrt h̃jk of the sequence {Zt,N} is defined by:

Sj(z) = |Wj(z)|2, j = 1, . . . , J, z ∈ (0, 1) (14)

Gives a time-scale decomposition of Zt,N that can be deemed analogous to
eqn (5).

Let Ψj(τ) =
∑

h̃◦jk h̃
◦
jk−τ for j = 1, 2, . . . and τ ∈ Z.
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Wavelet Models

LSW III:

Using the autocorrelation wavelets Ψj(τ) we can construct valid
autocovariance functions of quasi-stationary processes.

Definition (The Local Auto-Covariance [36])

The Local Auto-Covariance c(z , τ) of an LSW process with EWS [Sj(z)] is
defined as:

c(z , τ) =
∞∑
j=1

Sj(z)Ψj(τ), τ ∈ Z, z ∈ (0, 1). (15)

For stationary processes the dependence on z is redundant.

The EWS is uniquely defined given the LSW process,

Sj(z) =
∑

A−1
jl

∑
c(z , τ)Ψl(τ). (Ajl is defined from Ψl(τ).
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Classes of Nonstationary Processes

Classes of Nonstationary Processes
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Classes of Nonstationary Processes Karhunen Processes

Karhunen-Loève Expansion

We started from the linear representation of eqn (1), and noted the
representation of Zt in terms of uncorrelated elements ϵt .

We can relax other aspects of the representation. This yields new classes of
stochastic processes.

Definition (Karhunen Processes [25])

A process Z (t) is a Karhunen process if it admits a representation of:

Z (t) =

∫
R
dZ(f )ψf (t), (16)

but where the covariance structure of the {dZ(f )} process is given by

cov(dZ(f ), dZ∗(f ′)) = dS
(I )
K (f )δ(f − f ′). (17)
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Classes of Nonstationary Processes Harmonizable Processes

Harmonizable Processes:

So we could start from using the complex exponentials still.

Definition (Harmonizable Process [31])

A second-order process Z (t) is (weakly) Harmonizable if it admits the
representation:

Z (t) =

∫
R
dZ(f )e i2πft , (18)

where the covariance structure of the {dZ(f )} process is given by

cov(dZ(f ), dZ∗(f ′)) = d2S
(I )
H (f , f ′).

Eqn (18) provides a decomposition of the process {Zt} in complex
exponentials. Correlated weights may be used in the expansion.
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Classes of Nonstationary Processes Harmonizable Processes

Equivalence of Karhunen and Harmonizable Classes of Processes.

It transpires that despite their superficial dissimilarity the harmonizable class
is a subset of the Karhunen class.

For Karhunen Processes eqns (16) corresponds to the Karhunen-Loève
expansion of Zt .

The functions {ψf (t)} are determined from the eigenequation of the process.

The covariance function can be retrieved from the eigensystem, this is known
as Mercer’s theorem.
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Classes of Nonstationary Processes Harmonizable Processes

Cyclostationary Models

How do we reduce this (sparsity!)

Classical sparse models include [18,19]) for C ∈ N

S(f1, f2) =
C∑

c=−C

Sc(f2)δ
(
f1 − f2 −

c

D

)
, (19)

This is the definition of a cyclostationary process.

Identical to covariance

γ(t, l) =
C∑

c=−C

γc(l)e
2iπ c

D t . (20)

It has been generalized to lines of arbitrary slope and location, [30] from

f1 = f2 +
c

D
.
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Classes of Nonstationary Processes Harmonizable Processes

Geometry of Sparse models
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Classes of Nonstationary Processes Harmonizable Processes

Not diverse/distributed enough
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Classes of Nonstationary Processes Harmonizable Processes

How change?

We [38] start from the form of s(t, l) and relax the strong form to

γ(t, l) =
C∑

c=−C

ςc(t, l) =
C∑

c=−C

ac(t)γc(l)e
2iπtc/D . (21)

The amplitude ac(t) modifies the weighting assigned to each harmonic across
the time course of observation.

With S(f + ν, f ) =
∑

c Sc(f + ν, f ) produces a spread of frequency:

Sc(f + ν, f ) =
∑
t,l

ςc(t, l)e
2iπ(tν+lf ) = Sc(f )Ac(ν −

c

D
).

We have taken ν = f1 − f2 and f = f2 to rotate the structure into the “right”
frame of reference.
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Classes of Nonstationary Processes Harmonizable Processes

Islands of support

We now have little “islands” of support, where the support is governed by the
function ac(t).

Seems arbitrarily simple to write out different functions when defining
S(f1, f2).

Not all such functions are allowed: again we face validity as a covariance
structure.
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Classes of Nonstationary Processes Harmonizable Processes

Distribution of frequencies
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Classes of Nonstationary Processes Other Families of Processes

Larger sets of families

Even more general classes may be defined:

Definition (Cramér Processes [11])

A process Z (t) is a Cramer process if it admits a representation of:

Z (t) =

∫
R
dZ(f )ψf (t), (22)

but where the covariance structure of the {dZ(f )} process is given by

cov(dZ(f ), dZ∗(f ′)) = dS
(I )
K (f )δ(f − f ′). (23)

The KF or ‘asymptotically stationary’ class, see Kampé de Feriet and
Frenkiel [24] as well as Parzen [40] and Rozanov [43],

the Cramér-Hida class of processes, see [12,23,8]
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Classes of Nonstationary Processes Other Families of Processes

Stationary ⊂ Strongly Harmonizable (24)

⊂ Weakly Harmonizable (25)

⊂ Karhunen class (26)

⊂ Cramer class. (27)

More and more complicated models...
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Classes of Nonstationary Processes Other Families of Processes

Why not useful?
“Given an arbitrary non-stationary process, the spectrum associated with the

Wold-Cramer decomposition will often be meaningless.”
G. Melard and A. Herteleer-De Schutter, Contributions to Evolutionary Spectral

Theory, 1988.
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Classes of Nonstationary Processes Deformation Stationary

More Recent Introductions:

Deformation stationary processes were introduced by Sampson and
Guttorp [44] for multi-dimensional processes.

We assume that:
s̃t1,t2s(|g(t1)− g(t2)|), (28)

where g(t) is a non-linear mapping, g : R =⇒ R.
Thus a warping of time makes the process stationary.

Such ideas have also been explored by [6].
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Classes of Nonstationary Processes Deformation Stationary

Tempering

The notion of tempering was introduced by Pintore and Holmes [41].

Assume we have a parametric spectral density function S(f |θ) depending on
the set of parameters θ.

Define the localised sdf at position t by S(f |θ) 7→ [S(f |θ)]η(t).
This defines a local covariance function

s̃(t1, t2) =

∫
e2iπf (t1−t2)[S(f |θ)]η(t1)/2[S(f |θ)]η(t2)/2 df . (29)

This defines a valid autocovariance sequence [41].
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Inference Methods for Non-Stationary Processes

Inference Methods for Non-Stationary Processes
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Inference Methods for Non-Stationary Processes Time-Frequency Estimation Methods

Priestley’s Inference approach

Having introduced the class of non-stationary models, it is of course
necessary to propose suitable inference procedures.

Naturally the optimal inference method for evolutionary spectra change as
we select the given non-stationary model.

This corresponds to choosing a given semi-stationary family F for analysis.

For given classes of models, specialized inference methods were proposed, i.e.
see [21,22,13]. Naturally more general methods are necessary.
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Inference Methods for Non-Stationary Processes Time-Frequency Estimation Methods

Typical models include piecewise stationary processes [4], i.e. for some
fixed change points 0 = u0 < u1 < · · · < um+1

Zt =
m∑

k=1

I(uk ≤ t/N < uk+1)Z
(k)
t

where Z
(k)
t are independent stationary processes,

blended stationary process [39]

Zt =
m∑

k=1

Wk

( t
N − uk

uk+1 − uk

)
Z

(k)
t .

uniformly modulated stationary processes [3][p. 150] where

Zt = A
( t

N

)
Z̃t ,

autoregressive processes with time-varying coefficients

p∑
j=0

aj
( t

N

)
Zt−j = σ

( t

N

)
εt ,

a0(u) ≡ 1 and εt are independent rvs with mean 0 and variance 1.
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Inference Methods for Non-Stationary Processes Time-Frequency Estimation Methods

Other approaches

It is highly unsatisfactory to need to develop new methods for each proposed
model.

Adak [4] proposed a segmentation procedure that automatically identified
lengths of the series that could be estimated as stationary.

Adak’s method can be applied to the models mentioned, and estimated the
time-dependent spectrum. In the procedure the segmentation used CART [1]
and smoothed the estimated spectrum.

Kayhan et al. [26,27] estimated the evolutionary periodogram. They modelled

Zt = At(f )e
2iπft + Yt , (30)

where Yt are all the contributions not associated with frequency f .

At(f ) is estimated using a basis expansion.

sofia.olhede@epfl.ch (EPFL) Dependence in Space & Time February 2, 2024 44 / 68



Inference Methods for Non-Stationary Processes SLEX Estimation

Smooth Localized Complex EXponential (SLEX)

Adak’s method suffers from the usage of a non-orthogonal transform.

Hence it is not possible to prove consistency, see [39].

Furthermore, the segmentation method per se, may introduce blockiness in
the estimated time varying sdf.

A SLEX basis function is given by:

ϕf (u) = Ψ+(u)e
2iπfu +Ψ−(u)e

−2iπfu.

This is a generalization of the windowed Fourier basis.

The SLEX basis vectors can be directly defined from this, see [39], and are
denoted ϕS,fk ,t .
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SLEX continued

The SLEX transform smoothly divides the time series dyadically.

d
(X )
j,b (fk) =

1√
Mj

∑
t

Ztϕ
∗
j,b,fk ,t , ϕj,b,fk ,t = ϕS(j,b),fk ,t . (31)

SLEX transform forms a library of orthonormal transforms. Hence can use
the Best Basis Algorithm of Coifman and Wickerhauser [9] (see Day X) to
determine the best basis selection.

This estimates the time-varying spectrum.
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Dahlhaus & Estimation

Dahlhaus [14] defined the data window h(x) with h(x) = 0 if x /∈ [0, 1] and

dM(u, f ) =
M−1∑
s=0

h
( s

M

)
X[uN]−M/2+s+1,Ne

−2iπfs , (32)

Hk,M(f ) =
M−1∑
s=0

hk
( s

M

)
e−2iπfs , (33)

IM(u, f ) =
|dM(u, f )|2

2πHk,M(0)
. (34)
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Dahlhaus [14] then defined the Local Whittle likelihood Approximation, for
shift q with tj = q(j − 1) +M/2 and j = 1, . . . ,P where N = q(P − 1) +M
or uj = tj/N by:

Definition (Local Whittle likelihood Approximation)

From a given time series of length N, denoted Xt,N we define the local Whittle
Likelihood approximation by:

LN(θ) =
1

4π

1

P

P∑
j=1

∫ 1/2

−1/2

{
log(S(uj , f |θ)) +

IM(uj , f )

S(uj , f |θ)

}
df . (35)
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Properties of LN(θ).

The limit as N → ∞ of E
(
N−1LN(θ)

)
as the asymptotic

Kullback-Leibler [14].

We define
θ̂N = argθ∈Θ minLN(θ), (36)

as the maximum Whittle likelihood estimator.

[14] also discusses fitting time-varying ARs.

[15] extended the methods to multiple dimensions.
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Dahlhaus

To be able to develop asymptotics for non-stationary time series some
appropriate “large parameter” needs to be introduced.

Just increasing the sample length is not sufficient, as the non-stationarity
makes the effective number of parameters grow as the sample length grows.

To this purpose Dahlhaus [14] introduced the concept of ‘rescaled time’.

Assume you collect data for t = 0, . . . ,N − 1, then all theory is developed for
u = t/N.

This permits us to develop large sample theory.
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Adaptive Covariance Estimation [33]

Defining a locally stationary process by eqn. (3), Mallat et al. note that sde’s
often generate processes that are locally stationary.

For locally stationary processes, one can construct local cosine vectors that
approximately diagonalise the covariance matrix.

It was assumed that there were multiple (R) replicates of the data.

The covariance was estimated using ‘best basis’, see [9].
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Macrotiles

Donoho et al. [17] use macrotiles introduced by [33] to estimate the
covariance of a non-stationary process.

We still model Z
(r)
t for r = 1, . . . ,R, as a zero-mean random process.

A matrix S = [s̃(t1, t2)]t1,t2 is estimated by Ŝ = [ŝ(t1, t2)]t1,t2 by defining

ŝ(t1, t2) =
1

R

R∑
r=1

Z
(r)
t1 Z

(r)
t2 . (37)

This estimator is unbiased but has a large mean square error.

Improving the estimator starts from Ŝ = S̃ + ε.
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The macrotile method considers a predefined family F of subspaces of
vectors in CN2

.

One constructs spaces M from a a dictionary D = {Bb} =
{
gb
m

}N

m=1
, where

Bb is an orthogonal basis.

We start by segmenting [0,N2] into sets S = {Ik}.
The segmentation associated each Ik with a 1-D macrotile space Wk ,
generated by

∑
m∈Ik

gb
m.

M = ⊕K
k=1Wk defines a macrotile model.

Donoho et al computes the best empirical model M̂ from Z
(r)
t and this is

equivalent to finding the best basis in D.

Local Cosine basis used for applications in voice analysis [17].
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Time-Varying Models and Wavelets

Additionally multiscale methods have been combined with parametric models.

Tsatsanis and Giannakis as well as Zheng [47,51] model the observations Zt

by:

Zt =

p∑
k=1

at,kZt−k + εt . (38)

They select a basis for representing at,k . Wavelet bases are proposed, and
statistical procedure for selection are given.

This is extended into time-varying ARMA, and MA [48].
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Discussion

This lecture introduced ways to relax the assumptions of stationarity.

Temporal imhomogeneity, difference stationarity and frequency coupling are
different ways to relax stationarity.

General frameworks existed of stationary processes, locally stationary
processes, locally stationary wavelet processes, Karhunen processes,
harmonizable processes, Cramér processes etc.

New estimation procedures are possible to design for these settings.
Interpretation is harder.
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