
Estimation & Dependence in Space & Time
Lecture 1: Stationary Time Series

Sofia Olhede

February 2, 2024

sofia.olhede@epfl.ch (EPFL) Dependence in Space & Time February 2, 2024 1 / 92



1 Examples

2 Setting and Notation
Stationarity

3 Time domain analysis
Statistics of interest
Some important specific models
Some important models
Estimation

4 The frequency domain
Spectral Analysis
Sampling and aliasing
Spectral Estimation
Multi–Tapering
Whittle Likelihood

sofia.olhede@epfl.ch (EPFL) Dependence in Space & Time February 2, 2024 2 / 92



Different time series characteristics

Mean reverting? Seasonal? Changing trend?
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Unobserved Components Models

In econometrics for example, the notion that a time series is an aggregation
of different phenomological behaviours is common.

The unobserved components model was championed by Harvey & Koopman
as a basis for state-space modelling.

Thus

time series = Trend + Cyclical + Seasonal + Irregular.
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Examples
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Figure: Measurements of velocity (cm/s) and position from a probe in the Global Drifter
Programme.
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Examples

Data density
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Examples

Figure: CO2 measurements from Mauna Lao observatory.
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Examples
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Figure: Seismic traces from the Feb. 9th, 1991 Solomon Islands earthquake as measured
from the Pasadena recording station in California.
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Examples

Figure: Gross domestic product (USA), (Zimbabwe).
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Examples

Figure: Gross domestic product (Switzerland) and (Sweden).
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Examples

Spatio-temporal Data

How do we check if there have been processing errors?
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Examples

Spatio-temporal Data II

Mean reverting? Seasonal? Changing trend?
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Setting and Notation

Setting and Notation
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Setting and Notation

What is a time series?

Informally, a time series Xt is just data recorded over time.

We shall use the word ‘time series’ to mean both the data, and the process
from which the data is a realisation.

More formally, we think of Xt as a stochastic process, namely as a family of
random variables {Xt : t ∈ T} defined on a probability space (Ω,F ,P).

In time series analysis the index (or parameter) set T is a set of time points,
very often R or ∆Z (or a subset of them).
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Setting and Notation

What is a time series practically?

Whilst it is mathematically useful to think of processes with infinite index
sets, in practice we can only make finitely many observations.

Therefore, the set of observations Xt we actually record are in some set of
time points T ′ ⊂ T .

Normally T ′ is a discrete set (often with a regular sampling interval)
{0,∆, . . . , (N − 1)∆}.
The time series may also be recorded over an interval T ′ = [0,T0] (though it
obviously cannot be stored digitally in this way directly).
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Setting and Notation

Definition

Let F be the set of all vectors
{t = (t1, . . . , tn)

T ∈ T n : t1 < t2 < · · · < tn, n = 1, 2, . . . }. Then the
(finite-dimensional) distribution functions of {Xt t ∈ T} are the functions
{Ft(·), t ∈ T} defined for t = (t1, . . . , tn)

T by

Ft(x) = Pr(Xt1 ≤ x1, . . . ,Xtn ≤ xn), x = (x1, . . . , xn)
T ∈ Rn.

Theorem (Kolmogorov’s theorem)

The probability distribution functions {Ft(·), t ∈ F} are the distribution
functions of a given stochastic process if and only if for any natural number n and
t ∈ F and 1 ≤ i ≤ n we have

lim
xi→∞

Ft(x) = Ft(i)(x(i)),

where we have defined t(i) and x(i) as the (n− 1)-component vectors obtained by
deleting the ith component of t and x respectively.
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Setting and Notation Stationarity

Stationarity I

Definition ((Weak) Stationarity)

The time series {Xt} is said to be second-order/weak or covariance stationary if
for all n ≥ 1 for any t1, . . . , tn ∈ T and for all τ such that t1 + τ, . . . , tn + τ ∈ T
all the joint moments of order 1 and 2 of Xt1 , . . . ,Xtn exist, are all finite and equal
to the corresponding joint moments of Xt1+τ , . . . ,Xtn+τ .

In fact this corresponds to E{Xt} = µ, Var{Xt} = σ2 and
E{Xt1Xt2} = E{Xt1+τXt2+τ}. One may deduce from this that E{Xt1Xt2} is a
function of t2 − t1 only.
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Setting and Notation Stationarity

Stationarity II

We can go beyond the first two moments and define strong stationarity.

Definition ((Strong) Stationarity)

The time series {Xt} is said to be completely/strong or strictly stationary if for all
n ≥ 1 for any t1, . . . , tn ∈ T and for all τ such that t1 + τ, . . . , tn + τ ∈ T the
joint distribution of Xt1 , . . . ,Xtn is the same as Xt1+τ , . . . ,Xtn+τ .

Note that second order stationary ⇏ strictly stationary (in general). Strict
stationarity ⇏ 2nd order stationarity (in general). For example iid student t
with non-finite variance.
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Time domain analysis

Time domain analysis
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Time domain analysis Statistics of interest

Autocovariance

Normally we handle finite collections of random variables. To understand them
better we often compute their covariance matrix. For a time series {Xt} the
extension of the covariance matrix corresponds to the autocovariance function. If
the process is stationary and discrete time, this can be reduced to the
autocovariance sequence.

Definition (The autocovariance sequence)

For a discrete time second-order stationary process {Xt} we define the
autocovariance sequence (ACVS) by

γτ = Cov{Xt ,Xt+τ} = Cov{X0,Xτ}.
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Time domain analysis Statistics of interest

Properties of the autocovariance I

(i) Note that τ is the lag.

(ii) γ0 = Var{Xt} = σ2 and γ−τ = γτ .

(iii) The auto-correlation sequence (ACS) is defined as

ρτ =
γτ
γ0

.

(iv) As ρτ is a correlation it follows that |ρτ | ≤ 1. This implies that

|γτ |
γ0

≤ 1 ⇒ |γτ | ≤ γ0 = Var{Xt}.
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Time domain analysis Statistics of interest

Properties of the autocovariance II

(v) The sequence {γτ} is positive semi-definite, that is for all n ≥ 1 for any
t1, . . . , tn ∈ T and for any real numbers a1, . . . , an we have

n∑
j=1

n∑
k=1

γj−kajak ≥ 0.

(Follows easily by noting this equals the variance of the random variable
W =

∑n
j=1 ajXj)

(vi) The covariance matrix of X is Toeplitz.
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Time domain analysis Statistics of interest

(a) Time Domain Models of First and Second Order Structure

To model the distribution of X we hence posit forms for µT and ΣT .

Second Order Stationarity, corresponds to assuming:

µt = µ < ∞ ∀t, [ΣT ]ij = γti−tj < ∞. (1)

Strict Stationarity corresponds to assuming the distribution of any finite
sample, i.e. the distribution of X, is equivalent to that of a time-shifted
sample, for say shift τ ∈ N, [Xt1+τ , . . .ZtN+τ ].

For Gaussian Processes these two are equivalent.

Directly specifies the model for the data.

sofia.olhede@epfl.ch (EPFL) Dependence in Space & Time February 2, 2024 25 / 92



Time domain analysis Statistics of interest

Generating Mechanism

Definition (Gaussian process)

A process {Xt} is a Gaussian if for every set of indices T = {t1, . . . , tN} the vector
X = [Xt1 , . . .XtN ] is a vector-valued Gaussian random variable, i.e. for some mean
µT = [µt1 . . . µtN ] and co-variance ΣT the joint distribution of Z is given by:

fX(x) =
1√

(2π)N |Σ|
exp

(
−1

2
(x− µT )

T
Σ−1

T (x− µT )

)
(2)

The joint distribution is then fully specified by noting µT and ΣT .
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Time domain analysis Statistics of interest

Inferences:

Inferences are sometimes made based on the time domain (log)-likelihood:

ℓ(θ) = −1

2
log(|ΣT (θ)|)−

1

2
[X− µ1]TΣ−1

T (θ)[X− µ1]. (3)

This is tedious to calculate as ΣT is often very non-sparse.

Other methods have been proposed to speed up calculations.
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Time domain analysis Some important specific models

White noise

An example of a stationary process is a white noise, also known as a purely
random process. This corresponds to a sequence {Xt} of uncorrelated RVs
such that

E(Xt) = µ, Var(Xt) = σ2 ∀t.

In this case

γτ =

{
σ2 if τ = 0
0 otherwise

,

or equivalently

ρτ =

{
1 if τ = 0
0 otherwise

.

White noise is a building block for other time series models.
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Time domain analysis Some important specific models

Moving average

q-th order moving average (MA) process MA(q). This takes the form

Xt = µ− θ0,qϵt − θ1,qϵt−1 − · · · − θq,qϵt−q = µ−
q∑

j=0

θj,qϵt−j ,

and θj,q are constants (θ0,q = −1 and θq,q ̸= 0.)

Also {ϵt} is normally assumed to be zero-mean white noise.

We can calculate the moments of this process. We find that EXt = µ.

Cov{Xt ,Xt−τ} = Cov

{
µ−

q∑
j=0

θj,qϵt−j , µ−
q∑

l=0

θl,qϵt−τ−l

}

= Cov

{
q∑

j=0

θj,qϵt−j ,

q∑
l=0

θl,qϵt−τ−l

}
=

q∑
j=0

q∑
l=0

θj,qθl,q Cov{ϵt−j , ϵt−τ−l}

= σ2
ϵ

q∑
j=0

q∑
l=0

θj,qθl,qδt−j,t−τ−l =

{
σ2
ϵ

∑q
j=0 θj,qθj−τ,q if |τ | ≤ q

0 otherwise
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Time domain analysis Some important specific models
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Time domain analysis Some important specific models

The Wold Decomposition

Theorem (The Wold Decomposition Theorem)

Assume that Zt is a stationary zero-mean process. Then it admits representation

Zt =
∞∑
j=0

hτ ϵn−τ + µt = Un + µn, (4)

where h0 ≡ 1,
∑

j h
2
j < ∞, and ϵn is a zero-mean process satisfying:

1. E[ϵnϵm] = σ2
ϵδn,m,

2. E[ϵnµm] = 0, for all n and m,

3. µn is purely deterministic.
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Time domain analysis Some important specific models

The Wold Decomposition II

A function is purely deterministic if given its past it can be perfectly
predicted.

The Wold decomposition theorem historically important for the analysis of
stationary processes,

It can be used to justify the approximation of an arbitrary stationary time
series via a truncated sum, or an MA model:

Zt − µ =

p∑
j=0

hτ ϵn−τ .

If ϵn and ϵm are independent rather than uncorrelated, then Zt is a linear
process.
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Time domain analysis Some important models

Autoregressive process

pth order autoregressive process AR(p). This takes the form of

Xt = ϕ1,pXt−1 + ϕ2,pXt−2 + · · ·+ ϕp,pXt−p + ϵt .

Here the set {ϕj,p} are constants, and ϵt is a white-noise process.

In contrast with the moving average process, we have constraints on {ϕj,p}
to obtain a stationary process.
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Time domain analysis Some important models
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Time domain analysis Some important models

ARMA

Next process combined two mechanisms

Auto-regressive Moving Average Process ARMA(p, q). This is specified by

Xt = ϕ1,pXt−1 + · · ·+ ϕp,pXt−p + ϵt − θ1,qϵt−1 − · · · − θq,qϵt−q,

for t = 0,±1,±2,±3, . . . .

Harmonic (Sinusoidal) process

Xt = r−1A(ω) cos(νt +Θ(ω)),

for t = 0,±1,±2,±3, . . . .
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Time domain analysis Estimation

How do we estimate time series models?

In practice, we will only have access to (part of) a single realization.

We will use a time-average to give time replication.

Assume that the autocovariance satisfies
∑

τ |γτ | < ∞. and define

X̄ =
1

N

N∑
i=1

Xi .

What are the properties of this estimator?

E{X̄} =
1

N

N∑
i=1

E{Xi} = µ.

So X̄ is unbiased as an estimator of µ.
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Time domain analysis Estimation

What about the variance? We say that X̄ will converge to µ in mean square if

lim
N→∞

Var{X̄} = 0.

How do we figure this out?

We calculate

Var{X̄} = E{(X̄ − µ)2}

= E{( 1
N

N∑
i=1

Xi − µ)2}

=
1

N2

∑
i

∑
j

E(Xi − µ)(Xj − µ).

How can we simplify this?

sofia.olhede@epfl.ch (EPFL) Dependence in Space & Time February 2, 2024 37 / 92



Time domain analysis Estimation

We need to acknowledge the correlation in the process. If the covariance was
σ2 everywhere then we could not have mean square convergence.

We find that

Var{X̄} =
1

N2

∑
i

∑
j

E(Xi − µ)(Xj − µ)

=
1

N2

∑
i

∑
j

γj−i

=
1

N2

N−1∑
τ=−(N−1)

(N − |τ |)γτ

=
1

N

N−1∑
τ=−(N−1)

(N − |τ |)
N

γτ
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Time domain analysis Estimation

We now need the Césaro summability theorem which says that if∑N−1
τ=−(N−1) γτ converges to a limit then

∑N−1
τ=−(N−1)

(N−|τ |)
N γτ converges to

the same limit.

Thus

lim
N→∞

N · Var{X̄} = lim
N→∞

N−1∑
τ=−(N−1)

(N − |τ |)
N

γτ

= lim
N→∞

N−1∑
τ=−(N−1)

γτ

=
∞∑

τ=−∞
γτ = Cγ ,

say.
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Time domain analysis Estimation

The assumption of absolute summability of {γτ} implies that {Xt} has a
purely continuous spectrum with sdf:

S(f ) =
∞∑

τ=−∞
γτe

2iπf τ .

Thus it follows that

S(0) =
∞∑

τ=−∞
γτ .

Thus
lim

N→∞
N Var{X̄} = S(0),

and so

Var{X̄} ≍ S(0)

N
.
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Time domain analysis Estimation

We just showed that the sample mean was consistent, e.g. X
P→ µ, if the

spectrum was a purely continuous spectrum.

This is something we would expect for an iid sample, but as we saw due to
the decay of the covariance sequence the pure continuity of the spectrum
followed.

Seems like a general idea: “when can we replace a sample average by a
population average”? But what about the correlation? Does it matter? Does
it change things?

For example, consider the AR(1) process:

Xt = ϕXt−1 + εt ,

for X0 ∼ N(0, 1
1−ϕ2 ). Can we always average this? Do other statistical

operations? What happens as ϕ changes?
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Time domain analysis Estimation

Figure: ACVS of the AR(1) with different values of ϕ.
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Time domain analysis Estimation

Figure: Density estmates from the AR(1) with different values of ϕ.
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Time domain analysis Estimation

We can now formalize this idea:

Definition ((Mean) Ergodic)

The time series {Xt} is said to be mean ergodic if its first and second moments
are finite and

lim
N→∞

X̄
P→ EXt .

The funny squiggle
P→ means “converges in probability” and informally it

implies that the mean stabilizes as the expectation tends to a constant and
the variance goes to zero.

The concept can be generalized to the dth moment for d ≥ 2, not just for
the mean.

The informal understanding of this is “Sample means converge to population
means,” or “temporal averages are equivalent to population averages”.

Ergodicity and stationarity are not equivalent. The former concept is popular
in econometrics.
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Time domain analysis Estimation

Other Moments

We also estimate other moments by method of moments, e.g. replacing the
population moments with sample moments. Thus we take

γ̂(p)
τ =

1

N

N−|τ |−1∑
t=0

{Xt − µ̂}{Xt+τ − µ̂}.

This is a shrinkage estimator. Why?

sofia.olhede@epfl.ch (EPFL) Dependence in Space & Time February 2, 2024 45 / 92



The frequency domain

The frequency domain
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The frequency domain Spectral Analysis

For discrete–time stationary stochastic processes assume that Xt is a
real-valued discrete time stationary process with zero mean.

There exists an orthogonal increment process {Z (f )} on [− 1
2 ,

1
2 ] such that

Xt =

∫ 1
2

− 1
2

e2iπftdZ (f ). (5)

This equality holds in the mean–square sense. The process {Z (f )} has
properties

1. E{dZ(f )} = 0 for |f | ≤ 1/2.
2. E{|dZ(f )|2} = dS (I )(f ) for S (I )(f ) the integrated spectrum.
3. For any two disjoint frequencies f1 ̸= f2 Cov{dZ(f1), dZ(f2)} = 0. This

orthogonality of the increment process is a very useful result.

Note that the covariance of two complex random variables Z1 and Z2 is
defined as

Cov{Z1,Z2} = E{(Z1 − EZ1)(Z2 − EZ2)
∗}.
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The frequency domain Spectral Analysis

The complementary covariance or relation is defined as

Rel{Z1,Z2} = E{(Z1 − EZ1)(Z2 − EZ2)}.

Definition

A Complex–Proper Process A Complex–Proper Process Zt satisfies that its
relation-sequence r(τ) is

r(τ) = Rel{Zt ,Zt−τ} = 0.

Note that

Xt =

∫ 1
2

− 1
2

e2iπftdZ (f )

=

∫ 1
2

− 1
2

e2iπft+iarg{dZ(f )}|dZ (f )|. (6)
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The frequency domain Spectral Analysis

We note that if Xt is real–valued with zero–mean then

γτ = Cov{Xt ,Xt+τ}
= E{XtXt+τ}
= E{X ∗

t Xt+τ}

= E

{∫ 1
2

− 1
2

e−2iπftdZ (f )

∫ 1
2

− 1
2

e2iπf
′(t+τ)dZ (f ′)

}

=

∫ 1
2

− 1
2

∫ 1
2

− 1
2

e−2iπfte2iπf
′(t+τ)dS (I )(f )δ(f − f ′)

=

∫ 1
2

− 1
2

e2iπf τdS (I )(f ).

Thus the integrated spectrum determines the autocovariance for a stationary
process.
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The frequency domain Spectral Analysis

If in fact S (I )(f ) is differentiable so that dS (I )(f )
df = S(f ) i.e.

dS (I )(f ) = S(f )df then it follows

γτ =

∫ 1
2

− 1
2

e2iπf τS(f )df .

S(f ) is called the spectral density of Xt .

In fact it transpires that E{|dZ (f )|2} = S(f )df .

To understand this fully, we need to study Fourier theory.

As a reminder we note that a square summable deterministic sequence {gt}
has as a Fourier representation

gτ =

∫ 1
2

− 1
2

e2iπf τG (f )df .

This is the Inverse Fourier Transform.
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The frequency domain Spectral Analysis

The forward Fourier Transform is given by

G (f ) =
∑
τ

gτe
−2iπf τ , −1

2
≤ f ≤ 1

2
.

Note that in this definition we are using discrete time and continuous
frequency. This will have consequences in our analysis as we shall see later.

{gτ} and G (f ) form a Fourier transform pair. This is a bijection; namely
{gτ} is given by G (f ), and vice versa. We write gτ ↔ G (f ).

In this manner, the autocovariance sequence {γτ} forms a Fourier transform
pair with the spectral density function S(f ), and so

γτ =

∫ 1
2

− 1
2

e2iπf τS(f )df (7)

S(f ) =
∑
τ

e−2iπf τγτ . (8)
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The frequency domain Spectral Analysis
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The frequency domain Spectral Analysis
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The frequency domain Spectral Analysis

In various books people use ω = 2πf instead of f . This is called angular
frequency rather than frequency. I don’t like it, because it causes factors of
2π to fly around all over the place, that are easily missed/forgotten, but it is
equivalent.

Furthermore S(f )df is the average contribution over all realizations of the
process to the power from components with frequencies in a small interval
around f . The variance or “power” of Xt is

γ0 = Var{Xt} =

∫ 1
2

− 1
2

e2iπf 0S(f )df . (9)
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The frequency domain Spectral Analysis

We note the following properties of the spectral density function (sdf, S(f ))
and the integrated spectrum (S (I )(f )):

(i) The integrated spectrum, is the integrated spectrum

S (I )(f ) =

∫ f

− 1
2

S(f ′)df ′.

(ii) 0 ≤ S (I )(f ) ≤ σ2 = Var{Xt}.
(iii) S (I )(− 1

2
) = 0 and S (I )( 1

2
) = Var{Xt}.

(iv) f < f ′ ⇒ S (I )(f ) ≤ S (I )(f ′). Also S(−f ) = S(f ).

Since S (I )(f ) is quite similar to a probability distribution function we have the
following theorem.
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The frequency domain Spectral Analysis

We can characterise a stochastic process by its integrated spectrum.

Theorem (Lebesgue decomposition theorem)

Any integrated spectrum S (I )(f ) can be written as

S (I )(f ) = S
(I )
1 (f ) + S

(I )
2 (f ) + S

(I )
3 (f ),

where the three contributions are all non-negative, non-decreasing functions with

S
(I )
1 (− 1

2 ) = 0 for j = 1, 2, 3 and

(1) S
(I )
1 (f ) is an absolutely continuous function, i.e. its derivates exist for almost all f

and is equal almost everywhere to its spectral density function (sdf) S(f ) such that

S
(I )
1 (f ) =

∫ f

− 1
2

S(f ′)df ′.

(2) The function S
(I )
2 (f ) is a step function with jumps of size {pl} at the points {fl}l

where fl are frequencies of pure sinusoids.
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The frequency domain Spectral Analysis

(3) S
(I )
3 (f ) is a continuous singular function (pathological and generally of no

practical use).

We can then characterise some common scenarios in terms of this
decomposition:

(a) This case corresponds to S
(I )
1 (f ) ≥ 0 and S

(I )
2 (f ) ≡ 0. In this case we say

that {Xt} has a purely continuous spectrum. Note that as S
(I )
1 (f ) is

absolutely continuous and non-decreasing (often increasing). Hence its
derivative S(f ) is absolutely integrable (see for example Titchmarsh, The
Theory of Functions). But note that if S(f ) is absolutely integrable∫ 1

2

− 1
2

cos(2πf ′τ)S(f ′)df ′ → 0
∫ 1

2

− 1
2

sin(2πf ′τ)S(f ′)df ′ → 0 as τ → ∞.

But then (de Moivre) as τ → ∞:

γτ =

∫ 1
2

− 1
2

e2iπf τ S(f )df =

∫ 1
2

− 1
2

cos(2πf ′τ)S(f )df + i

∫ 1
2

− 1
2

sin(2πf ′τ)S(f )df → 0.
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The frequency domain Sampling and aliasing

We have discussed estimating properties of {Xt} where this is a discretely
indexed stochastic process, e.g. t ∈ N.
But actually, in real-life problems, it is often convenient to imagine this is a
sample from a continuous time process {X (t)}, t ≥ 0.

Thus a discrete process {Xt} is usually obtained by sampling a continuous
time-process at equal time intervals ∆t > 0.

For a given sampling interval ∆t > 0 and an arbitrary starting point t0 we
can define a discrete time process as

Xt = X (t0 + t∆t), t = 0,±1,±2, . . . .

If {X (t)} is a stationary process with say sdf SX (t)(f ) and autocovariance
function

γ(τ) = Cov{X (t),X (t + τ)},

then {Xt} is also a stationary process with sdf SXt (f ) and autocovariance
sequence {γτ}.
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The frequency domain Sampling and aliasing

We start with the spectral representation for {X (t)}, which is

X (t) =

∫ ∞

−∞
e2iπftdZX (t)(f ).

Then we have that

Xt = X (t0 + t∆t)

=

∫ ∞

−∞
e2iπf (t0+t∆t)dZX (t)(f )

=
∞∑

k=−∞

∫ 2k+1
2∆t

2k−1
2∆t

e2iπf (t0+t∆t)dZX (t)(f )

=
∞∑

k=−∞

∫ 2k+1
2∆t

2k−1
2∆t

e2iπft0e2iπft∆t)dZX (t)(f ).

We now do a change of variable f 7→ f ′ + k
∆t .
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The frequency domain Sampling and aliasing

Then we have

Xt =
∞∑

k=−∞

∫ 1
2∆t

−1
2∆t

e2iπ(f
′+ k

∆t )t0e2iπ(f
′+ k

∆t )t∆tdZX (t)

(
f ′ +

k

∆t

)

=

∫ 1
2∆t

− 1
2∆t

e2iπf
′t∆t

∞∑
k=−∞

e2iπ(f
′+ k

∆t )t0dZX (t)

(
f ′ +

k

∆t

)

=

∫ 1
2∆t

− 1
2∆t

e2iπft∆tdZ (f ).

Thus we end up with the regular spectral representation. {dZ (f )} is the
orthogonal increment for the discrete time process. We find

EdZ (f ) = E
∞∑

k=−∞

e2iπ(f+
k
∆t )t0dZX (t)

(
f +

k

∆t

)
= 0
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The frequency domain Sampling and aliasing

By the orthogonality of dZX (t)(f ) and dZX (t)(f
′) it follows that

Cov{dZ (f ), dZ (f ′)} = 0. (If f ̸= f ′).

We can thus take dZ (f ) to be the increments of the orthogonal process Z (f )
in the spectral representation for X (t).

The integrated spectrum for {Xt} is

dS
(l)
Xt
(f ) = E

{
|dZ (f )|2

}
=

∞∑
k=−∞

E

{∣∣∣∣dZX (t)

(
f +

k

∆t

)∣∣∣∣2
}

=
∞∑

k=−∞

dS
(l)
X (t)

(
f +

k

∆t

)
|f | ≤ 1

2∆t
.

Thus when S
(I )
X (t)(f ) is differentiable, so is also S

(I )
Xt

(f ).

And when that is the case we have aliasing or ”fahltung”.

SXt (f ) =
∞∑

k=−∞

SX (t)

(
f +

k

∆t

)
, |f | ≤ 1

2∆t
.
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The frequency domain Sampling and aliasing

The frequency 1
2∆t is called the Nyquist frequency.

As we previously took ∆t = 1 this yields − 1
2 ≤ f ≤ 1

2 .

If SX (t)(f ) is essentially zero for |f | ≥ 1
2∆t we can expect a good

correspondence between SXt (f ) and SX (t)(f ) for |f | ≤ 1
2∆t .

This basically is equivalent to assuming SX (t)

(
f + k

∆t

)
≈ 0 for k = 1, 2, . . ..

If SX (t)(f ) is large for |f | ≥ 1
2∆t then the correspondence is poor so SXt (f )

tells us nothing about SX (t)(f ).
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The frequency domain Spectral Estimation

We recall the relationship

S(f ) = ∆t
∞∑

τ=−∞
γτe

−2iπf τ∆t

We can therefore produce a spectral estimator from γ̂
(p)
τ by appending the

sequence with zeros.

Ŝ (p)(f ) = ∆t
N−1∑

τ=−(N−1)

γ̂(p)
τ e−2iπf τ∆t

=
∆t

N

N−1∑
τ=−(N−1)

N−|τ |∑
t=1

XtXt+|τ |e
−2iπf τ∆t

=

∣∣∣∣∣∣
√
∆t√
N

N∑
j=1

Xje
−2iπfj∆t

∣∣∣∣∣∣
2

.
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The frequency domain Spectral Estimation

Note that Ŝ (p)(f ) is defined over
[
− 1

2 ,
1
2

]
and Ŝ (p)(f ) ↔ γ̂

(p)
τ . This mirrors

S (p)(f ) ↔ γ
(p)
τ .

Further we have

γ̂(p)
τ =

∫ 1
2∆t

− 1
2∆t

Ŝ (p)(f )e2iπf∆tτdf

Ideally as an estimator we would have

(a) EŜ (p)(f ) = S(f ),

(b) Var Ŝ (p)(f ) → 0 as N → ∞ (consistency)

(c) Cov
{
Ŝ (p)(f ), Ŝ (p)(f ′)

}
= 0 for f ̸= f ′
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The frequency domain Spectral Estimation

However instead we find that

(a) EŜ (p)(f ) = S(f ), is approximately valid
(b) is false
(c) holds approximately if f and f ′ have a particular form, the so-called Fourier

frequencies.

Furthermore, considering the expected value we arrive at

EŜ (p)(f ) = ∆t
N−1∑

τ=−(N−1)

Eγ̂(p)
τ e−2iπf τ∆t

= ∆t
N−1∑

τ=−(N−1)

(
1− |τ |

N

)
γτe

−2iπf τ∆t

Thus if we know {γτ} then we can work out EŜ (p)(f ).
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The frequency domain Spectral Estimation

We obtain more insight if we consider

Ŝ (p)(f ) =

∣∣∣∣∣∣
√
∆t√
N

N∑
j=1

Xje
−2iπfj∆t

∣∣∣∣∣∣
2

We then define

J(f ) =

√
∆t√
N

N∑
j=1

Xje
−2iπfj∆t , Ŝ (p)(f ) = |J(f )|2.

In fact, from one of the problem sheets

EŜ (p)(f ) =

∫ 1
2∆t

− 1
2∆t

S(f ′)FN(f − f ′)df ′

with FN(f ) =
sin2(N∆tπf )
sin2(∆tπf )

. This is the Fejer kernel.
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The frequency domain Spectral Estimation

Set ∆ = 1. Thus E
{
Ŝ (p)(f )

}
is the convolution of S(f ) and the imaging

kernel FN(f ). The properties of FN(f ) are

(a) For all integers N ≥ 1,FN(f ) → N as f → 0.
(b) For N ≥ 1f ∈

[
− 1

2
, 1
2

]
, f ̸= 0FN(f ) < FN(0).

(c) For N ≥ 1f ∈
[
− 1

2
, 1
2

]
, f ̸= 0FN(f ) → 0 as N → ∞ or f → ∞.

(d) For any integer k such that fk = k/N (Fourier frequencies) FN(fk) = 0.
(e) Normalization ∫ 1

2

− 1
2

FN(f )df = 1

From (a), (c) and (e) it follows that as N → ∞FN(f ) acts like a delta
function.
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The frequency domain Spectral Estimation

Since S(f ) is normally assumed continuous we can informally argue

lim
N→∞

E
{
Ŝ (p)(f )

}
=

∫ 1
2

− 1
2

FN(f − f ′)S(f ′)df ′

≈
∫ 1

2

− 1
2

δ(f − f ′)S(f ′)df ′ = S(f )

The performance of the periodogram depends on the time series being
analysed.

Examples. For white noise S(f ) = σ2
ϵ for |f | ≤ 1/2.

E
{
Ŝ (p)(f )

}
=

∫ 1
2

− 1
2

FN(f − f ′)S(f ′)df ′

= σ2
ϵ

∫ 1
2

− 1
2

FN(f − f ′)df ′

= σ2
ϵ

∫ 1
2

− 1
2

FN(f
′)df ′ = σ2

ϵ
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The frequency domain Spectral Estimation

Thus we may note that the periodogram is unbiased for all values of N.

Let us study an AR(2) process. Define

10 log10

{
maxf S(f )

minf S(f )

}
,

as the dynamic range of the spectrum.

How can we reduce the bias of the spectral estimator.

One method corresponds to tapering. The idea is to change FN(f ) to
something that decays faster.

We will form the product

{htXt , t = 1, . . . ,N}.

We refer to {ht} a data taper. We normally assume ht is real-valued.
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The frequency domain Spectral Estimation

We define

J(f ) =
N∑
t=1

htXte
−2iπft .

Starting from first principles we get

J(f ) =
N∑
t=1

ht

∫ 1
2

− 1
2

dZ (f ′)e2iπf
′te−2iπft

=

∫ 1
2

− 1
2

H(f − f ′)dZ (f ′), H(f ) =
N∑
t=1

hte
−2iπft

Finally we define

Ŝ (d)(f ) = |J(f )|2 =

∣∣∣∣∣
N∑
t=1

htXte
−2iπft

∣∣∣∣∣
2
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The frequency domain Spectral Estimation

Image from Percival and Walden (1993).
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The frequency domain Spectral Estimation

We can recover the periodogram by taking ht =
1√
N
. In that case

Ŝ (d)(f ) = Ŝ (p)(f ).

So

E
{
Ŝ (d)(f )

}
= E{J(f )J∗(f )}

= E

{∫ 1
2

− 1
2

H(f − f ′)dZ (f ′)

∫ 1
2

− 1
2

H∗(f − f ′′)dZ∗(f ′′)

}

=

∫ 1
2

− 1
2

∫ 1
2

− 1
2

H(f − f ′)H∗(f − f ′′)E{dZ (f ′)dZ∗(f ′′)}

=

∫ 1
2

− 1
2

H(f − f ′)S(f ′)df ′

We take H(f ) = |H(f )|2. Also chose to take
∑N

t=1 h
2
t = 1.
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The frequency domain Multi–Tapering

Assume you have a set of tapers {ht,k} for t = 1, . . . ,N and
k = 0, . . . ,K − 1.

We define a spectral estimate for each value of k . We therefore have

Ŝ
(d)
k (f ) =

∣∣∣∣∣
N∑
t=1

ht,kXte
−2iπft

∣∣∣∣∣
2

.

Orthogonality implies that we assume

N∑
t=1

ht,kht,j = δj,k .

The simplest multitaper estimate is

Ŝ (mt)(f ) =
1

K

K−1∑
k=0

Ŝ
(d)
k (f ).
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The frequency domain Multi–Tapering

We can determine its expectation:

E
{
Ŝ (mt)(f )

}
=

1

K

K−1∑
k=0

E
{
Ŝ
(d)
k (f )

}
=

1

K

K−1∑
k=0

∫ 1
2

− 1
2

Hk(f − f ′)S(f ′)df ′

=

∫ 1
2

− 1
2

H(f − f ′)S(f ′)df ′

We call H(f ) = 1
K

∑K−1
k=0 Hk(f ) the average kernel.

We can note that

Var
{
Ŝ (mt)(f )

}
≈ S2(f )

K
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The frequency domain Whittle Likelihood

Frequency domain likelihoods

Easy to state permitted auto-covariance functions using Bochner’s theorem.
A form for γX (τ) if

S(f ;θ) =
∞∑

τ=−∞
γX (τ)e

−2iπf τ . (10)

Note that

γX (0) ≡ σ2 =

∫ 1/2

−1/2

S(f ) df . (11)

The population mean µ is estimated by µ̂ and removed from the data.

Remaining structure found in γX (τ) which also needs to be estimated.
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The frequency domain Whittle Likelihood

We cannot determine dZ (f ).

Instead the Discrete Fourier Transform (DFT) of sample X is calculated:

J(f ) =
1√
N

N∑
t=1

[Xt − µ̂] exp(−2πitf ).

From Brillinger we can note that with fk = k
N with appropriate cumulant

conditions:
J(fk)

d
= NC (0,S(fk))

where NC (·, ·) denotes the complex proper distribution (see earlier).

{J(fk)}⌊N/2⌋−1
k=1 are asymptotically uncorrelated (there is some funkiness with

frequency grid), not quite the same as jointly normal.
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The frequency domain Whittle Likelihood

Define Ŝ (p)(f )(f ) = |J(f )|2 then the discrete Whittle’s likelihood can be
written as:

ℓ(θ) = − 1

N

⌊N/2⌋∑
j=0

{
Ŝ (p)(fj)

S(fj ;θ)
+ log(S(f ;θ))

}
Then maximum likelihood corresponds to

θ̂wl = argθ max ℓ(θ) = argθ min(−ℓ(θ)).

Whittle likelihood can be implemented over a subset of all frequencies
(Robinson), or with tapering (Thomson).
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The frequency domain Whittle Likelihood

When so we expect the Whittle likelihood to work well?

It is an example of a composite likelihood (obtained by multiplying together
likelihood for components (that are not necessarily independent), see B.
Lindsay (1988)).

What composite likelihoods could be formed? In time we might chop up
region, or select a subset of spatial observations, partially conditioning on a
nearby region (Vecchia (1988), has been added to by Katzfuss and Guinness
(2021)).

We could instead form a composite likelihood in frequency.

For finite samples the Fourier coefficients are correlated, and their variance is
not the spectrum.

It is however very fast to compute.
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The frequency domain Whittle Likelihood

Whittle’s Likelihood II

This also is an approximation to the time-domain likelihood (see review paper
by Dzhaparidze [17] and).

Relies on eigenvectors of circulant matrices etc.

Is usually discretized and based on the Discrete Fourier Transform.

A series of papers by Whittle [47,48], establish the properties of this
approximation, corresponding to the continuous Whittle likelihood. For
certain families

∫
log{S(f ;θ)} df = 0, and this motivates the simplified form

without the log term.
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The frequency domain Whittle Likelihood

Discussion

This lecture introduced the notion of a probabilistic invariance; that of shift
invariance, or temporal stationarity.

We explored a number of consequence of this, a) temporally independent
moments, b) the spectral representation and c) the Wold decomposition.

Frequency domain estimation was explored.
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