Information détaillée concernant le cours
Titre | École d’été 2022 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dates | 4–7 septembre 2022 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Responsable de l'activité | Sebastian Engelke |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Organisateur(s)/trice(s) | Prof. Sebastian Engelke, UNIGE Mme Caroline Gillardin, coordinatrice CUSO Co organisation avec l'EPFL et l'EPFZ |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intervenant-e-s | Prof. Bin Yu from University of California, Berkeley (USA) Prof. Johannes Schmidt-Hieber from University of Twente, Enschede (The Netherlands) Prof. Aaditya Ramdas, Université Carnegie Mellon, Pittsburgh (USA) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description | You will find on our web site the slides of our speakers on the following link (please note we will send you the password by e-mail separately): https://drive.switch.ch/index.php/s/Ld09bQucg9wXF0a 3 cours de 4 à 5h30 chacuns seront donnés par des spécialistes internationaux sur des sujets de pointes en statistiques. Prof. Bin Yu de University of California, Berkeley (États-Unis) Title: Veridical data science and interpretable machine learning towards trustworthy AI Abstract Lecture 1:This lecture introduces the predictability computability stability (PCS) framework and documentation that unifies, streamlines and expands on ideas and best practices from statistics and machine learning for the entire data science life cycle. Prof. Johannes Schmidt-Hieber from University of Twente, Enschede (The Netherlands) Title: Statistical theory for deep neural networks Abstract Lecture 1:Survey on neural network structures and deep learning. There are various types of neural networks that differ in complexity and the data types that can be processed. This lecture provides an overview and surveys the algorithms used to fit deep networks to data. We discuss different ideas that underly the existing approaches for a mathematical theory of deep networks. Practical:The participants should try whether they can run the attached source code prior to the tutorial (we are not allowed to send python code via email. I have therefore changed the file ending to .txt. The file ending should be changed back from .txt to .py). The code has been written by Thijs Bos (University of Leiden). We recommend to install Anaconda and use spyder. Additional packages have then to be installed via Anaconda. Most notably Keras/tensorflow does not work with all version of pythons and it can be a bit tricky to install it. During the tutorial, we will also ask the participants to work a bit on their own with this program along some questions that we prepare. Prof. Aaditya Ramdas, Université Carnegie Mellon, Pittsburgh (USA) Title: game-theoretic statistics and safe anytime-valid inference Abstract Lecture 1 :Estimating means of bounded random variables by bettingWe introduce the principle of "testing by betting" by discussing in detail a simple and classical problem from probability theory and statistics from the 1960s (Hoeffding): given observations from a bounded distribution, how can we estimate its mean? This is a nonparametric estimation problem, for which we present state-of-the-art confidence intervals and "confidence sequences", that were derived from a decidedly game-theoretic perspective. We will introduce "Ville's inequality", the central (and only) mathematical inequality that underlies game-theoretic statistics. Time permitting, we will discuss some history, and what exactly Ville established in his seminal 1939 PhD thesis. Lecture 2: Sequential experimental design: the lady tasting tea and universal inference. One of the main ideas in game-theoretic statistics is that we bet against the null, and directly use the resulting "wealth as evidence against the null". The resulting evidence processes are called "e-processes" (or e-values) and have many advantages over traditional notions of evidence like p-values. Primarily, if the evidence does not suffice, one can extend the experiment for free and collect even more evidence while maintaining a strong notion of error control. We will elaborate on these ideas by revisiting Fisher's classical "lady tasting tea" experiment from 100 years ago from a new, modern lens, and discuss extensions to multiple testing. If time permits, we will give a general methodology for constructing e-processes: universal inference. Lecture 3 : Betting for sampling without replacement: how to audit elections. We discuss a very different, but interesting, application of testing and estimation by betting: how to audit an election (after an election result has been announced). This boils down to answering questions about sampling without replacement, another very well studied and classical problem for which betting provides a powerful new answer. Time permitting, we will end with an overview of other topics in nonparametric statistics and probability theory that were not covered in these three lectures. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Programme |
This program may be changed |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lieu |
Saignelégier - Centre de Loisirs des Franches-Montagnes - Jura |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Information | Centre de loisirs des franches-montagnes (CLFM) (JURA-RESORT) Adress : Chemin des Sports 10, 2350 Saignelégier, Canton du Jura Tel +41 (0)32 951 24 74 De: Aéroport de Genève : Train direct jusqu'à Neuchâtel. Ensuite train de Neuchâtel à La Chaux-de-Fonds. Ensuite train de la Chaux-de-Fonds à Saignelégier. Durée des trajets: Genève - Neuchâtel (69 minutes), Neuchâtel - La Chaux-de-Fonds (28 minutes), La Chaux-de-Fonds - Saignelégier (34 minutes).
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Frais | Tarifs si l'activité a lieu en présentiel : Doctorant CUSO chambre double: 200 CHF Doctorant CUSO chambre simple: 350 CHF Post-doctorant CUSO chambre double: 300 CHF Post-doctorant CUSO chambre simple: 450 CHF Professeur CUSO chambre double: 400 CHF Professeur CUSO chambre simple: 550 CHF Non CUSO universitaire chambre double: 850 CHF Non CUSO universitaire chambre simple: 1000 CHF Non CUSO privé chambre double: 1300 CHF Non CUSO privé chambre simple: 1500 CHF Lors de votre inscription, merci de bien vouloir indiquer dans la zone commentaire si vous désirez une chambre simple, ou double et le nom de la personne avec qui vous souhaiteriez partager votre chambre. Dans le cas où rien n'est indiqué, une chambre simple sera réservée.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inscription | Versement sur compte postal (seulement si l'activité à lieu en présentiel): CUSO IMPORTANT :Si vous vous inscrivez et que vous n'êtes pas en mesure d'y assister, veuillez nous contacter dès que possible. Nous appliquerons la politique d'annulation de l'hôtel en cas d'information tardive. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Places | 35 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Délai d'inscription | 02.09.2022 |