Seminar 3

Data Visualization

Discover, Explore and be Skeptical

Di Cook
Statistics, Iowa State University soon to be Business Analytics, Monash University

Inference and Exploration

- Discoveries need to be calibrated by what might have been possible. Maintain a healthy skepticism.
© Underlying plots of data, are assumptions that implicitly specifying null hypotheses: what would you see if there really was nothing happening.
© Exploratory and inferential ARE NOT mutually exclusive.

Here is the math gap exploration placed in the CONTEXT of there being NO MATH GAP ...

$5-46$
6-46

Nulls by permutation

- Hold country fixed (subset by country)Permute the gender labels, so that the math scores are randomly assigned to a boy or girl
- Recalculate the difference between the means

6 Plot the mean difference by country again

Let's do a real one

© 40 oligos (variables)

- 48 wasps (cases)
© 4 types of wasps
- Best LDA 2D separation of four groups
(Toth et al, 2010)

Really?

Les Diablerets, Feb 1-4, 2015

Protocols

Rorschach: Show many pictures of data with "nothing" happening, pictures from a null distribution
(6) Lineup: Embed the plot of the data among plots of data generated from the null distribution

Data plot
Null plots

- 9 -46

Hypothesis testing

Consideration ONE

Sampling distribution comparison is against a finite

Source: Roy Chowdhury (2014)

Consideration ONE

KEEP IN MIND: In practice, graphics is being used when there is no quantification of a sampling distribution. All we have is ($m-1$) representatives from whatever

Consideration TWO

(6) What is the p-value?
© For one observer, the probability of randomly selecting the data plot is $1 / m$, where m is the number of plots in the lineup.
© With multiple observers, the p-value is estimated by
Number of independent observers

Source: Majumder et al (2013) To appear

Consideration THREE

6 What is the power of the test?
Where is a choice of type of plot to use. Some will be more optimal than others.
Signal strength will be defined as "proportion of observers who identify the data plot".
Enables the comparison of different plot designs.
© Signal strength equals power, when only plot design changes.

Lineup	\# Correct	Reason	Confidence
1			
2			
3			
4			
5			
6			
7			
8			

Study

- Examine wind direction and airport efficiency.
H_{0} : wind direction has no effect on efficiency against the alternative H_{a} : wind direction does have an effect.
© Decide on best display: (conditional) wind rose charts or bar charts, where each of 36 wind directions the percentage of flights falling into one-minute intervals between successive flights, from zero minutes to eight minutes or more is shown in color scale.

A similar study

MOTIVATION: A very small data set of chemical concentrations taken from a superfund clean up site concentrations taken from a superfund clean up
(5 values), compared with samples taken from a normal site (15 values).
Can we see a difference between the two groups, using a side-by-side dotplot? Are side-by-side dotplots using a side-by-side dotplot? Are side-by-side dotplots
better for comparing groups, or side-by-side boxplots, or stacked histograms or density plots?

In which group is the blue group further to the right?

Results of full study

Les Diablerets, FEB 1-4, 2015

Boxplots beats all other plot designs, except for really small data sets.

Process

1. Decide on appropriate plot of the data, using good graphical principles.
2. Make the lineup before you have seen the actual data plot.
3. Pick the plot that is different from the rest.
4. If you have already seen the plot of the data, you can show the lineup to someone who hasn't, and use their results.
5. Services like Amazon's Mechanical Turk allow employing independent observers, from a broad cross-section of society.
6. (We are not doing invalid post-hoc testing.)

nullabor package

Builds on the ggplot2 package for making data plots.
Generate the lineups automatically, so that you see this before you see the plot of the data.
Encrypts the location of the actual plot, for you to decrypt when you're ready.

Tennis statistics

© The relationships between round and performance statistic were not regular.
© Simple linear model may not pick up if there is a relationship between the variables.
Lineups can be used to determine if there is a ${ }^{*}$ real ${ }^{*}$ relationship.
© Permutation of "round" label is used to generate nulls

Ready?

decrypt("Y25b yGKG Uu I1OUKU1u Xj")

decrypt("Y25b yGKG Uu I1OUKU1u Xj")

Summary

EDA \& Inference

If the plot that is picked is the plot of the real data, this is statistical significance, and a p-value can be placed on the discovery.

- Buja et al (2009) RSPT A (econ eg)
© Wickham et al (2010) InfoVis/TVCG
Hofmann et al (2012) InfoVis/TVCG
- Majumder et al (2013) JASA
- Roy Chowdhury et al (2014) Comput. Stat.
© Zhao et al (2014) IJITAS

