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Census: Complete enumeration every 10 or 5 years. 

Population census collects basic items from all persons. 

Agricultural census collects information from all farms, etc. 

 

Main use of census: Can produce statistics at any level of 

disaggregation. Local area statistics are needed. 

 

Limitations: Only few items can be covered, expensive, not 

current, and not timely. 

 

Sample surveys: Observe only a portion of the population 

according to a specified sampling design 
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Advantages: (1) Reduced cost relative to census. It is the 

sample size that matters and not the population size in terms 

of precision of estimates.  

(2) Greater speed and scope: census may be impractical if 

highly trained personnel or specialized equipment needed.  

(3) Greater accuracy: less measurement errors with well 

executed sample survey, i.e. less non-sampling errors 

(4) Current statistics: South African Quarterly Labour Force 

Survey (QLFS); Monthly Canadian Labor Force Survey 

(LFS) 

(5) Sampling in census: Long form used to collect more 

detailed information from a sample (1 in 5 for the Canadian 

Census). 
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Main steps in conducting a survey:                                         

 

(1) Objectives of the survey clearly formulated prior to the 

survey. 

(2) Target population vs. survey population (population to be 

sampled): under-coverage 

(3) Data to be collected: not too many questions 

(4) Degree of precision desired: sample size 

(5) Method of measurement: self-administered questionnaire, 

interview. Mode: mail, telephone, personal visit or 

combination 

(6) Questionnaire pretesting, field work organization 
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(7) Sampling frame: list of units 

(8)  Selection of the sample 

(9) Data collection and data entry 

(10) Edit and Imputation 

(11) Summary and analysis of collected data 

Reference: Cochran, W. G. (1977). Sampling Techniques, 3
rd

 

Ed., Wiley. 

 

Questionnaire Design: (1) Pretest before survey. (2) Keep it 

simple and clear. (3) Use specific questions. (4) Relate 

questions to the concept of interest. (5) Open-ended questions 

or specified answer categories. (6) Questions that elicit 

correct responses. (7) Avoid double negatives. (8) Question 

wording. (9) Question ordering. 
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Measurement errors: (1) Not tell the truth: farmers in an area 

with support program may underreport crop yields hoping for 

more subsidies.  (2) Not understand a question. (3) 

Telescoping: experience as crime victim in the last 6 months 

in National Crime Victimization Survey (NCVS). (4) 

Interviewer effect. (5) Vague questions. (6) Question wording 

and ordering 

 

Reference: Lohr, S. L. (2010). Sampling: Design and 

Analysis, 2
nd

 edition, Brooks/Cole. 
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Errors in surveys: Sampling errors, non-sampling errors: 

measurement errors, missing data: unit nonresponse and item 

nonresponse, under coverage. 

 

 

Sample Survey Setup 

Finite population: },...,2,1{ NU =                                          

Associated values: },...,{ 1 Nyy  

Auxiliary values: },...,{ 1 Nxx related to values of interest 

known from a census or administrative records. Only the total 

X for the entire population and some sub-groups of the 

population, e.g. Age/Sex/Race groups, may be known.  

Sample: a subset s of U  



 8

Sample design: )}(,{ sps  where s belongs to a set of samples 

defined by the design.                                                                

)(sp : known probability of selecting the samples.          

Sampling scheme is used to implement a sample design. 

Probability sampling: Design that ensures non-zero first order 

inclusion probabilities iπ  for every unit Ui ∈  

Basic sampling methods: Simple random sampling (SRS), 

stratified SRS, cluster sampling, systematic sampling, 

probability proportional to size (PPS) sampling. In practice, a 

combination of the basic methods is used to select a sample s. 

 

Data collected: }),,,{( sixyi ii ∈  
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Simple parameters of interest:  

• Total NyyY ++= ...1 ∑= ∈Ui iy )( yY= :operator notation 

• Mean NYY /=  

• Proportion: binary response 

• Median 

• Sub-population (domain) total Yy ddi i ≡∑ ∈  

• Domain mean: NYY ddd /= where Nd  is the unknown 

domain size. Example of domain: age-sex group 

 

More complex parameters: Regression coefficients, Income 

inequality: Gini coefficient, low income proportion: 

proportion of people below poverty line (half median 

income).  
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Design-based (or repeated sampling) inference for the total  

 

Design weights: sid ii ∈= ,/1 π  

Estimator of total: )(ˆˆ yYydY isi i =∑= ∈  

Ŷ is called the Narain-Horvitz-Thompson (NHT) estimator 

Interpretation of Ŷ : Sum of weight times the value for the 

units in the sample. Data file will contain columns of 

weights and corresponding values. Design weight id may be 

interpreted as the number of population units represented by 

the sample unit i including the sample unit itself. 
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Alternative expression forŶ : 

iiUi i yadY ∑= ∈
ˆ  

1=ia  if si ∈ and 0=ia  otherwise 

Pi =π ( )si ∈  )( iaE=  

NHT estimator is design unbiased if and only if the 

inclusion probabilities iπ are positive for all the population 

units: YYEp ≡)ˆ( noting that iiaE π=)(  

 

Variance of Ŷ : Measure of precision and it involves joint 

inclusion probabilities )( jiij aaE=π : 

2))(()ˆ( jiijjUji i zzYV −−∑= ∈< πππ )( yV=  
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if sample size n is fixed, where iii yz π/=  

 

Sen-Yates-Grundy (SYG) variance estimator of Ŷ : 

 

2)()ˆ( jisji
ij

ijji
zzYv j −∑

−
= ∈< π

πππ
 )ˆ(2

Ys≡ )(yv=  

SYG variance estimator is design-unbiased for )ˆ(YV          

Estimated coefficient of variation (CV) of YYsY /)ˆ(:ˆ often 

expressed in percent. 

 

Large sample α−1 level confidence interval (CI) on :Y   

 

∈Y )}ˆ(ˆ ),ˆ(ˆ{ 2/2/ YszYYszY αα +−  
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=2/αz  upper 2/α  point of )1,0(N  

 

Interpretation of CI: In repeated sampling according to 

specified design, proportion α−1  of intervals will contain 

the true value Y . 

 

Efficient sampling strategy: Find a combination of design 

and estimator that minimizes the variance of the estimator 

for a given cost or minimizes the cost for a given precision. 

In practice, this ideal goal is not easy to achieve. 
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Advantages of design-based approach: No models or 

distributional assumptions. It provides valid large sample 

inferences. But inference refers to repeated sampling. 

 

   Simple random sampling 

 

Definition: All possible samples of size n have the same 

probability of selection.  

 

Properties: (1) )}1(/{)1( ,/ −−== NNnnNn iji ππ  for all 

units i and )( ij ≠ .  

(2) NY =ˆ (Sample mean y) ∑= ∈si iynN )/(  
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(3) 
n

S

N

n
NYV

y
2

2 )1()ˆ( −=                                                    

=2
yS  Population variance = 

2)}1/({ yNN σ−      

=− Nn /1  Finite population correction (FPC) 

 

(4) Unbiased variance estimator )ˆ(Yv  is obtained from (3) by 

replacing 
2
yS  by the sample variance 

2
ys  

 

Model-dependent approach: Nyy ,...,1  randomly generated 

from some model. In particular, for SRS we assume them to 

be IID random variables with mean µ  and variance 
2
yσ . SRS 
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design is non-informative and hence the sample also obeys 

the assumed model.  

 

Write the total as ∑+∑= ∈∈ ri isi i yyY where r denotes the set 

of non-sampled units. Under the assumed model, the best 

linear unbiased estimator (BLUE) of µ  is the sample mean y . 

The best predictor of iy  for ri ∈  is yyi =ˆ . Therefore the best 

linear unbiased predictor (BLUP) of Y is 

 

YynNyyY si iri isi im
ˆ)/(ˆˆ =∑=∑+∑= ∈∈∈  

 

The estimator is model-unbiased in the sense 0)ˆ( =−YYE mm  
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Note: In this special case both approaches give the same 

estimator. It is both design unbiased and model unbiased. 

 

Measure of variability = Mean squared prediction error = 

nN

n
NYYVYYE mmm

2
22 )1()ˆ()ˆ(

σ
−=−=−  

 

We replace 2σ by 
2
ys  which is model-unbiased for 2σ to get 

estimator of variance of mŶ . Hence we also get the same 

variance estimator (and CI) under the two approaches but 

interpretations are different.  
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Interpretation: Under repeated realizations of the population 

values, proportion α−1 of the CI will contain the realized 

value of Y conditionally given the sample s. 

 

Bayesian approach: An advantage of this approach is that it 

provides inferences conditional on the data }),,{( siyi i ∈ , not 

just on the sample s. But we need to assume a parametric 

family of distributions for the responses iy  and prior 

distributions on the model parameters µ  and 2σ . We get a 

predictive distribution of iy for ri ∈ given the data. If no prior 

information is available and we assume normality, then using 

a non-informative prior, the Bayesian approach will give the 

same answers as the other two approaches. But the 
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interpretations are different and the intervals are called 

credible intervals.  

 

Domain Estimation 

 

Parameters 

 

 Domain total )( ayYyayY diidUidi id =∑=∑= ∈∈  

Domain size )( aYaN dUi idd ∑ == ∈  

Domain mean )(/)(/ aYayYNYY ddddd ==  

1=id a  if unit di ∈  and 0=id a  otherwise 

iiid yya =  if unit di ∈  and 0=iid ya  otherwise 

 



 20

Estimators 

 

Method: Simply replace (.)Y  by (.)Ŷ  

 

Domain total: idsi idd ydayYY ∑== ∈ )()(ˆˆ  

=)(ds  sample of units belonging to domain d  

Data file: Simply multiply weight id by the corresponding iy  

in the data file and sum over the sample units i belonging to 

)(ds . Equivalently, multiply id  by iid ya and sum over all 

sample units si ∈  

 

Variance estimator: )()ˆ( ayvYv dd =  
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Domain size: ∑== ∈ )()(ˆˆ
dsi idd daYN  

 

Properties: Estimators Yd
ˆ  and Nd

ˆ   are design unbiased. They 

are called direct estimators or domain-specific estimators 

because they use data only from the domain of interest. 

 

Domain mean: NYY ddd
ˆ/ˆˆ =  = ratio of two estimators 

Note: Domain size or domain frame are not known. If domain 

size is known but not frame we call it post-stratum and if both 

are known we call it stratum. 

 

Properties: Yd
ˆ  in general is design biased but approximately 

design unbiased for large n. 
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Variance estimator: }ˆ)/ˆ({)ˆ( NYyavYv dddd −≈  

This is obtained by using the approximate formula for the 

variance of the ratio of two estimators of totals.  

 

Note: )ˆ( Yv d  is obtained by replacing iy by =iz

NYya ddiid
ˆ)/ˆ( − in the formula for )(yv . Note that iz is 0 if 

di ∉  and NYyz ddii
ˆ)/ˆ( −=  if di ∈ . 

Note: We can compare the means of two different domains, 

for example difference of mean incomes in two different age-

sex groups. 

Simple random sampling: yY dd =ˆ  (domain sample mean) 
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Variance estimator: 
n

s

N

n
yv

d

yd
d

2

)1()( −≈  

=nd  domain sample size; 
2
yd s sample domain variance 

 

Domain total: )/(ˆ nNYd = ( yNynnNy ddddsi di
ˆ)/())( =∑ =∈  

Note:  One can write  uNYd =ˆ  where u  is the mean of 

iidi yau = in the sample. Hence  

Variance estimator: ).()/)(/1()ˆ( 22
uvnsNnNYv ud =−=   

Note: 2
us  will be large because iu  takes the value 0 when unit 

i is not in the domain d : Price to be paid (in terms of 

increased variance) for not knowing Nd . 
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Calibration Estimators: use of auxiliary information 

 

Suppose that auxiliary information in the form of known 

population totals 
T

pXXX ),...,( 1= is available and that the 

auxiliary vector ix is also observed for si ∈ : sixyi ii ∈),,,{( }. 

Aim of calibration is to find new weights ),( siwi ∈  such that 

a specified distance measure between design weights id and 

revised weights iw  is minimizes subject to .Xxw isi i =∑ ∈  

 Chi-squared distance: )/()( 2
iiisi i qddw −∑=Φ ∈  

where iq is a “tuning constant” for unit i. 
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Solution: 

 iiiii
T
iiisi i

T
i dgdxqxxdqXXw ≡∑−+= −

∈ )}()()ˆ(1{ 1  

Note: Weight iw depends only on ix . The resulting estimator 

of Y is called the generalized regression (GREG) estimator: 

BXXYywyY
T

isi iGR
ˆ)ˆ(ˆ)(ˆ −+=∑= ∈    

iiisi i
T
iiisi i yxqdxxqdB ∑∑= ∈

−
∈ ))(ˆ 1  : weighted regression                   

 

Note that that XxYGR =)(ˆ and GREG ensures consistency of 

estimators when aggregated over different variables attached 

to the sample units: )(ˆ)(ˆ)(ˆ
2121 yyYyYyY GRGRGR +=+  
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Domain estimation: Domain total dY is estimated as  

).(ˆˆ
)( ayYywY dGRidsi iGRd =∑= ∈   

 

 

Properties of GREG: GRŶ  is approximately design unbiased 

for large sample sizes. A variance estimator is given by 

)()ˆ( gevYv GR =  where Bxye
T
iii

ˆ−=  are the regression 

residuals. One can also use )(ev  as the variance estimator but 

)(gev  reduces underestimation caused by )(ev . If x explains y 

through linear regression, then the variability of residuals ie  

will be smaller than the variability of iy  and hence GREG 

estimator will be more efficient than the simple NHT 

estimator Ŷ . GREG estimators are extensively used in 

practice.  
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Special cases: (1) Suppose x is a scalar and tuning constant 
1−= ii xq . Then GRŶ  reduces to the widely used ratio estimator 

XXYYR )ˆ/ˆ(ˆ = . Here XXgi
ˆ/=  does not depend on i. 

 

(2) Suppose we partition U into G  post strata gU with known 

population sizes gN . Let T
Giii xxx ),...,( 1= where 1=gix  if 

gUi ∈  and 0=gix  otherwise. Then GRŶ  reduces to the post-

stratified estimator ggg gPS YNNY ˆ)ˆ/(ˆ ∑=  where gŶ  and gN̂

are the direct estimators of the total gY and the size gN  for the 

post-stratum g: ∑=∑= ∈∈ )()(
ˆ,ˆ

gsi igigsi ig dNydY . Note that 



 28

)(gs  is the sample falling in the post stratum g . The estimator 

PSŶ  calibrates to the known post-strata sizes: ggPS NxY =)(ˆ  

(3) GREG estimator can be used to calibrate to known 

marginal post-strata sizes of two or more post-stratification 

variables, for example age and sex marginal counts. (4) 

Consider SRS, tuning constant 1=iq  and one auxiliary 

variable ix such that T
ii xx ),1(= . In this case GREG estimator 

reduces to the customary regression estimator 

)}({ˆ xXbyNYREG −+=  where y  and x are the sample means 

and 2)(/))(( xxxxyyb si iisi i −∑−−∑= ∈∈ is the customary 

least squares estimator of the slope coefficient in the linear 

regression of y  on x. 
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Model dependent approach: (1) Consider regression through 

the origin: iim xyE β=)(  and iiim xyV
22)( σσ ==  and assume 

that the model holds for the sample. In this case the BLUP of 

the total Y for any sampling design reduces to 

∑+∑= ∈∈ ri isi im yyY ˆˆ where ii xy β̂ˆ = and β̂  is the weighted 

least squares estimator (WLS) of β  given by 

=∑∑= −
∈∈

1222 )/)(/(ˆ
isi iiisi i xyx σσβ  xy / .  

It is easy to verify that mŶ reduces to the ratio estimator 

XxyYm )/(ˆ = regardless of the design. Only under SRS the 

BLUP agrees with the GREG estimator of case 1. (2) Suppose 

the model is 2
10 )(,)( σββ =+= imiim yVxyE . In this case the 
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BLUE of iy for ri ∈  is )(ˆ 10 xXbyxbby ii −+=+= , where 

xbyb −=0 and bb =1  are the least squares estimators of 0β  

and 1β . BLUP of the total Y  is )}({ˆ xXbyNYm −+= for any 

design provided the model holds for the sample. It follows 

that the BLUP agrees with the GREG estimator only under 

SRS. 

 

Model-assisted Approach: Here we assume only a “working” 

model and the resulting design-based inferences are 

asymptotically valid regardless of the validity of the assumed 

working model. If the working model is good, then we gain in 

terms of efficiency of the estimators. 
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Method: Suppose 0
iy is the predictor of iy for Ui ∈ based on  

ix  and a working model. Then we can write 

∑+∑= ∈∈ Ui iUi i eyY
0 , where 0

iii yye −= are the prediction 

errors.  If the model is good, then the variability of the 

predictor errors ie will be small compared to the variability of

iy . Now the population total of the ie is not known so we 

replace it by the corresponding NHT estimator isi iedE ∑= ∈
ˆ

to get the model assisted estimator EyY Ui ima
ˆˆ 0 +∑= ∈ . This 

estimator is asymptotically design unbiased regardless of the 

validity of the working model and yet could lead to increased 

efficiency if the working model is good. 
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Working model: 2)(   ,)( iim
T
iim yVxyE σβ ==  for Ui ∈  

If the population values iy and ix were known then the 

weighted least squares estimator of β  is the WLS estimator 

tTB
1−= , where 2/ i

T
iUi ixxT σ∑= ∈ and 2/ iiUi i yxt σ∑= ∈ . 

Now replace T and t  by the corresponding NHT estimators T̂  

and t̂ to get tTB ˆˆˆ 1−= . This leads to the predictor Bxy
T
ii

ˆ0 = for 

Ui ∈  and the resulting model-assisted estimator maŶ reduces 

to BXXY
T ˆ)ˆ(ˆ −+ . This is a GREG estimator and it is 

identical to the calibration estimator if we choose the tuning 

constant as 2
iiq σ= , provided the user-specified calibration 

totals match the −x totals corresponding to the auxiliary 

variables in the working model.  
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If the working model is different, say includes a quadratic 

term, then calibration and model assisted estimators do not 

agree if the user specifies only the total of x. We need to 

include the total of the 2
ix  values in the calibration in order to 

match the model-assisted estimator. So the two concepts are 

fundamentally different. But calibration has the advantage 

that we use the same adjusted weights iw for all −y variables. 

As a result, calibration estimator can lead to poor efficiency if 

the response variable y  is not related to the calibration 

variable.  
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Projection Estimator: An important special case occurs when 

0ˆ =E , leading to ∑=′= ∈Ui ima yBXY
0ˆˆ . The ratio estimator 

and the post-stratified estimator are special cases of a 

projection estimator. A sufficient condition for 0ˆ =E is that 

i
T

i xλσ =2 for some vector λ . For the projection estimator the 

weights are given by iii gdw = where 21 /ˆ
ii

T
i xTXg σ−/= . 

Note that we need only write ii a
22 σσ = where 2σ is unknown 

and ia is known. The estimator maŶ  does not depend on 2σ . 

Note that domain GREG does not have the projection form 

and using  the sum of the predicted values 0
iy in the domain as 

the domain estimator leads to design-inconsistent estimator.  
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Stratification 

 

(1) Strata ),...,1( LhUh =  represent a partition of U . Frames 

of strata are known. Example: Province X NAICS for 

business surveys in Canada (NAICS: North American 

Industry Classification System, 3 or 2 digit code).  

(2) Advantages: (a) Administrative convenience: separate 

field offices. (b) Permits handling sampling problems that 

differ in different parts of the population. (c) Gain in 

precision. 

 

Basic theory: Let )(yYY hh =  be the total for stratum h. Then 

LYYY ++= ...1 . Sample design consists of independent 
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samples hs from the L strata with specified probabilities 

Lhsp hh ,...,1),( = . Let )(ˆˆ yYY hh =  be the NHT estimator of hY  

 based on the specified design. Then the stratified NHT 

estimator of Y is Lstst YYyYY ˆ...ˆ)(ˆˆ
1 ++== . Because of 

independent sampling, ).()ˆ()ˆ( yVYVYV h hh hst ∑=∑=  

Similarly, ).()ˆ()ˆ( yvYvYv h hh hst ∑=∑=  

 

 Stratified SRS: A sample of size hn  is selected by SRS from 

the hN units in stratum h. In this case we have 

)/)(/1()( ,ˆ 22
hhyhhhhhhh nSNnNyVyNY −==  

where hy  is the sample mean and 
2
hyS is the population 

variance in stratum h. The variance estimator )(yvh  is 
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obtained by replacing 
2
hyS with the sample variance 

2
hys , 

assuming 2≥hn  for all h. 

 

We can write hh hst nAAYV /)ˆ( 0 ∑+=  where 
22
hyhh SNA =  and 

2
0 hyh hSNA ∑−= . A simple cost function is hh hnccC ∑+= 0

where 0c is the fixed overhead cost and hc  is the  cost per unit 

in stratum h.  

 

Design issues: (a) Number of strata L. (b) Construction of 

strata. (c) Sample size allocation to strata. Using a large  

number of homogeneous strata increases precision of 

estimation. In large-scale socio-economic surveys, 
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stratification is done to the extent that two primary sampling 

units (clusters) are selected from each stratum to permit 

variance estimation.  

 

Construction of strata: size stratification 

 

Suppose that we know some population size measures, say 

Nxxx <<< ...21  related to the variable of interest y  (for 

example size of firms in a business survey). Equal coefficient 

of variation (CV) within strata: LLxx XSXS /.../ 11 ==  can 

lead to efficient estimators. Let )min(0 ixk =  and 

)max( iL xk = . Then the L strata are defined by the points 

11,..., −Lkk such that LL kkkk <<<< −110 ... , where 
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Lh
Lh kkkk

/
00 )/(=  for 1,...,1 −= Lh  (Gunning and Horgan, 

Survey Methodology, 2004, 159-166).  

 

Example: Suppose .000,50,5,4 0 === LkkL  Then 
h

hk )10(5=  which leads to the following stratification 

boundaries: |5 – 50|50 – 500|500 – 5000|5000 – 50000| 

 

Sample size allocation: stratified SRS 

 

Proportional allocation: Given the strata, let hN  be the size of 

stratum h such that NNh h =∑ . Proportional allocation of the 

total sample size n is given by hh nWn =  where NNW hh /=  

is the relative size of stratum h. Note that proportional 



 40

allocation does not depend on the variable of interest y . Hence, 

it can be inefficient especially for skewed populations. 

However, the estimator  stŶ  under proportional allocation is 

more efficient than Ŷ  under simple random sampling if 1−
hN  

is negligible, although efficiency gains are modest.  

 

Optimal allocation: Given the L strata suppose we want to 

draw simple random samples of sizes hn  from the strata. We 

assume a simple cost function hh hnccC ∑+= 0 , where 0c  is 

the fixed overhead cost and hc  is the cost per unit in stratum 

h. Objective is to minimize the cost with respect to sample 

sizes hn  subject to a fixed variance 
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hh hst nAAYVV /)ˆ( 00 ∑+==         
2

0
22 , hyh hhyhh SNASNA ∑−== . 

Alternatively, we may want to fix the cost and minimize 

)ˆ( stYV . In either case, we have  

∑
=

h hh

hh
h

cA

cA
n

/
opt)( λ . 

Proportionality factor λ  is determined by the constraint used. 

If cost is fixed, then 0cC −=λ . In practice, we use the known 

population values of some variable x correlated with y  is 

used (for example, from the census or administrative records). 
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Neyman allocation: Suppose cch =  for all h and cost C  is 

fixed, then the total sample size is ccCn /)( 0−=  and  

∑= h hhh AAnn /opt)( . 

 

Multiple characteristics: Suppose we have p  variables of 

interest and stlY ,
ˆ is the estimator of the total lY for the variable 

pl ,...,1= . Let hh hlllstl nAAVYV /)ˆ( 0, ∑+== . Objective is to 

minimize the cost 0cC −  with respect to the hn  subject to 

fixed tolerances lV0 on the variances lV ; that is 

plVV ll ...,1,0 =≤ .                                                                  
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We transform the problem into a convex programming 

problem by letting hh nm /1= . Then we are minimizing a 

separable convex function hh h mc /∑  with respect to the hm  

subject to linear constraints plVmAA lhh hll ,...,1,00 =≤∑+ . 

Additional constraints on hn  can be imposed. For example, 

the constraint hh Nn ≤≤2  (equivalently 2/11 ≤≤−
hh mN ) 

ensures unbiased variance estimation and stratum sample 

sizes hn  always below the associated population sizes hN .  

 

Construction of strata under Neyman allocation: Cumulative 

f  rule minimizes the variance under Neyman allocation. 

Rule is to form the square root of frequencies f and choose 
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the stratification points such that approximately equal sizes 

on cum f are obtained.  

 

Take-all stratification: In Business Surveys, it is a common 

practice to have a take-all stratum of firms in the sense that all 

the firms are sampled. In our notation, boundary point 1−Lk  

creates the take- all stratum L and .LL Nn =  Let 

)/( Lhh Nnna −= , 1,...,1 −= Lh  so that .1=∑h ha  Under SRS 

within the sampled strata, we have 

)/)(/1()ˆ( 21
1

2
hhxhh

L
h hst nSNnNXV −= ∑ −

= , 

where 2
hxS is a function of the stratification points 1−hk and hk . 

Now substituting )( Lhh Nnan −=  in )ˆ( stXV  and using 
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Neyman allocation hx
L
h hhxhh SNSNa ∑ −

== 1
1

/  and solving for 

n for a fixed variance )ˆ( stXV we see that n is a function of 

11,..., −Lkk . Taking the derivative of n with respect to hk and 

equating it to 0, we get quadratic equations of the form  

1,...,1,02 −==++ Lhkk hhhhh γβα  

where hhh γβα ,, are functions of 11 ,, +− hhh kkk .  

 

Algorithm: (1) Start with Gunning et al. boundary points, say 

11,..., −′′ Lkk  and compute the corresponding hhh γβα ′′′ ,, . 

Calculate n and allocate LNn − to get ha . (3) Replace { }hk′  
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by }{ hk ′′  where hk ′′ is the solution of the quadratic equation 

using the starting values { hk′ }. (4) Repeat above steps until 

convergence.  

 

IPPS sampling 

 

To select primary sampling units (or clusters) i varying in 

size ix which is related to cluster total iY , inclusion probability 

proportional to size (IPPS) sampling is often used to increase 

efficiency of estimation. It has also other desirable features in 

the context of two-stage sampling within strata (discussed 

later). 
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We want to select n clusters by IPPS sampling without 

replacement such that the inclusion probability iπ for cluster i 

is equal to inp , where Xxp ii /= and X is the known 

population total of the sizes ix . We assume 1<inp  for all 

clusters i. In the case of single stage cluster sampling the 

NHT estimator of the total Y  is isi iYdY ∑ ∈=ˆ , where 
1)( −= ii npd . It now follows that if the size measures are 

strongly related to the corresponding cluster totals, the NHT 

estimator will lead to significant reduction in the variance. 

There are many methods of IPPS sampling and we consider 

only one such method that is commonly used to select 

clusters in stratified two-stage sampling.  
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Systematic PPS sampling:  (1) Arrange the N  sizes in some 

order, say Nxx ,...,1 . (2) Then the n selected clusters are those 

whose labels j  satisfy 

 

∑

=
∑

−

=
≤+<

j

i
i

j

i
i xkr

n

X
x

1

1

1
)(  

 

 for integers k = 0, 1, 2,--- (n-1) , where r  is a random number 

between 0 and 1. This is equivalent to selecting a random 

number between 0 and nX /  and stepping up by nX / . 
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Example: 3=n , 8=N  and 300=X  so that .100/ =nX  

 

   :i          1     2     3       4        5       6         7         8 

 

  ix :       15    81   26     42     20     16       45        55 

 

∑

=

j

i
ix

1
:    15    96   122   164   184   200     245       300 

                36            136                      236 

 

Random number 36100 =r . This gives 36 for ,0=k  136 for 

1=k  and 236 for 2=k . Units 2, 4 and 7are selected for the 

sample. 
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Two-stage Sampling 

 

 Population consists of N clusters with iM  elements in cluster 

i (∑i iM )0M= . iY  denotes the total for cluster i.A sample s 

of n clusters is selected from the N  clusters in the population 

according to IPPS design using size measures ip  so that 

ii np=π . Suppose im elements )(is are drawn by SRS from 

cluster i if it is included in the sample s.  

 

If the cluster totals are known then the NHT estimator of the 

total is )./(ˆ
isi i npYY ∑ ∈=  We simply replace iY  by its 

estimator iii yMY =ˆ , where ∑ ∈
−= )(
1

isj ijii ymy to get  
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ijsi isj ijisi im ydnpYY ∑ ∈ ∑ ∈∑ ∈ == )()/(ˆˆ  

  

)/)(/1( iiiij mMnpd = : design weight attached to the sample 

element j  in the sample cluster i. 

 

Special case: Suppose all the population cluster sizes are 

known and we use size measures proportional to cluster sizes: 

0/ MMp ii = . In this case )./(0 iij nmMd =  

Self-weighting: Suppose we wish to use equal work loads: 

mmi = . Then all the design weights are equal to 

)/(0 nmMd =  which is the inverse of the overall sampling 
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fraction. Estimator mŶ  is equal to the product of inverse 

overall sampling fraction and the sample total ∑ ∑i j ijy . 

General case of self weighting:  

 
)}/(Mfraction){ sampling overall ected(exp i ii npm =  

 

Variance estimator: An unbiased variance estimator of mŶ  is 

the sum of two components 1̂T  and 2̂T , where 

=1̂T  copy of the variance estimator in single stage sampling 

of clusters with iY  replaced by iŶ : requires joint inclusion 

probabilities 
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=2̂T  copy of the estimator in single stage cluster sampling 

with iY  replaced by the estimator of conditional variance of 
22 )/1(ˆ :ˆ
iyiiiii sMmMVY −= . 

 

Remark: Unbiased variance estimator is seldom used in 

practice because of its somewhat complex form. Instead, it is 

a common practice to use the formula for PPS sampling with 

replacement as an approximation:  

nsYv zma /)ˆ( 2=  

where )1/()( 2

1

2 −−= ∑

=
nzzs

n

i
iz  is the sample variance of the 

values ijisj ijiii ydnnpYz ∑ ∈== )()/(ˆ  for ni ,...,1=  are 
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weighted sample cluster totals. The above approximation 

forms the basis for re-sampling methods such as the jackknife, 

balanced repeated replication (BRR) and the Rao-Wu 

bootstrap, in the sense that the re-sampling variance estimator 

of mŶ  reduces to ).ˆ( ma Yv  Rao-Wu bootstrap is widely used in 

Statistics Canada. 

 

Remark: In practice, design weights are first adjusted for unit 

nonresponse; for example within sample clusters as done in 

the South African QLFS (households within PSUs). In 

general, weighting classes are formed on the basis of 

auxiliary information observed for all the sample units and 

then adjustments are made within each weighting class. After 

non-response adjustment, the adjusted weights are calibrated 
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to agree with known auxiliary totals, leading to final weights 

{ ijw } which are reported in the data file along with the 

associated data values { }ijy . The estimator of Y is then given 

by iji j ijmw ywY ∑ ∑=ˆ  

 

Stratified two-stage sampling: We introduce the additional 

subscript h to denote strata and note that hmhm YY ∑= ˆˆ =

hijh i j hij yd∑ ∑ ∑  

Similarly the final estimator mwŶ  is obtained from the final 

weights hijw    
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Approximate variance estimator: 

hh hzm nsYv /)ˆ( 2
∑=                                                                   

where 2
hzs  is the sample variance of the hn  weighted sample 

cluster totals hijj hijhhi ydnz ∑=  within stratum h. 

 

Efron’s Bootstrap: IID case 

 

Suppose nyy ,...,1  is an IID sample from some distribution 

and suppose θ  is the parameter of interest, for example the 

mean or the median of the unknown distribution. Suppose we 

also have an estimator θ̂  of θ  based on the random sample. 

We want to find a computer intensive but routine method to 
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calculate the variance estimator of θ̂  and confidence intervals 

for θ .  

 

Bootstrap sampling: (1) Draw a simple random sample with 

replacement of size n from the original sample of size n and 

denote this bootstrap sample as **
1 ,..., nyy  (2) Compute the 

associated estimator of θ  and denote it as 
*θ . (3) Repeat (1) 

and (2) a large number of times, say B to get **
1 ,..., Bθθ . (4) 

Bootstrap variance estimator of θ̂  is then given by  

2

1

*1
BOOT )ˆ{)ˆ( ∑

=

− −=
B

b
bBv θθθ  
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Remark: One could replace θ̂  by the average of the bootstrap 

estimates *
bθ  

 

Special case: }/{
1

)(ˆ 2
BOOT ns

n

n
yvy y

−
=⇒=θ nsy /2≈  

(5) Percentile method for CI: Approximate the distribution of 

θθ −ˆ  by the known bootstrap distribution of θθ ˆ* −  

Suppose 1000=B  and let 
*

)(
*

)1( ... Bθθ <<  denote the ordered 

values. Let θθ ˆ*
)50( −=a  and θθ ˆ*

)950( −=b .Then 90% 

confidence interval on θ  is obtained from ba ≤−≤ θθ̂  which 

is equivalent to ab −≤≤− θθθ ˆˆ .  
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Rao-Wu bootstrap: stratified two-stage sampling 

 

(1) Select 1−= hh nm  clusters from the hn  sample clusters in  

stratum h by SRS with replacement. Let *
him  be the number of 

times sample cluster )(hi  is selected in the bootstrap sample.   

(2) Bootstrap design weights: 
1

**

−
=

h

h
hihijhij

n

n
mdd . 

(3) Substitute *
hikd for hikd  in the formula for the final weight 

hikw  to get *
hikw . Use the final bootstrap weights in the 

estimator θ̂  to get 
*θ ; for example *

mwY . 

(4) Repeat steps (1) to (3) B times to get **
1 ,..., Bθθ . 
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(5) Bootstrap variance estimator of θ̂ : 

 

    2*1
BOOT )ˆ()ˆ( θθθ −= ∑

−
b bBv  

 

Note: Statistics Canada uses 500=B  bootstrap replicates. 

 

 

 

 

  

 

 

 



Examples of On-going Surveys 
 
 
Example 1: National Crime Victimization Survey (United States) 
 

Sponsor U. S. Bureau of Justice Statistics 

Collector U. S. Census Bureau 

Purpose 

Main Objectives are: 
• Develop detailed information about the victims and the 

consequences of crime 
• Estimate the number and types of crimes not reported 

to police 
• Provide uniform measures of selected types of crimes 
• Permit comparisons over time and by types of areas 

Year Started 1973 (previously called the National Crime Survey, up to 1992) 

Target Population 
Adults and children 12 or older – civilian and non-
institutionalized 

Sampling Frame 
U. S. households, enumerated through counties, blocks, listed 
addresses, lists of members of the household 

Sample Design 
Multi-stage, stratified, clustered area probability sample, with 
sample units rotating in and out of the sample over three years 

Sample Size About 41,00 households (78,600 persons) 

Use of Interviewer Interviewer administered 

Mode of Administration Face-to-face and telephone interviews 

Computer Assistance 
Paper questionnaire for 70% of the interviews, both face-to-
face and telephone interviews (computer assisted) for 30% of 
the interviews 

Reporting Unit Each person age 12 or older in household reports for self 

Time Dimension Ongoing rotating panel survey of addresses 

Frequency Monthly data collection 

Interview per Round of Survey 
Sampled housing units are interviewed every six months over 
the course of three years 

Levels of Observation Victimization incident, person, household 

Web Link http://www.ojp.usdoj.gov/bjs/cvict.htm 



Example 2: Quarterly Labour Force Survey (South Africa) 
 

Collector Statistics South Africa 

Purpose 

Main Objectives are: 
• Estimate numbers of persons employed, unemployed 

and economically inactive, the corresponding rates at 
the national, provincial and metro levels for the 
following estimation domains: 1) Age Groups, 2) Sex, 
3) Race Categories, 4) Industry Groups, etc. 

Year Started 2008 

Target Population Persons 15 – 64 years – civilian and non-institutionalized 

Sampling Frame 
Households in South Africa, enumerated through PSUs 
(Census EAs), addresses listed through field listing, lists of 
members of the household during interviewing 

Sample Design 
Two-stage, stratified, clustered area probability sample, with 
sampled dwelling units rotating out of the sample after four 
quarters 

Sample Size About 30,00 households (98,000 persons) 

Use of Interviewer Interviewer administered 

Mode of Administration Face-to-face interviews with paper questionnaire 

Computer Assistance None during data collection 

Reporting Unit Any adult in the in the household can report for all persons 

Time Dimension Ongoing rotating panel survey of dwelling units 

Frequency Monthly data collection for the survey quarter  

Interview per Round of Survey 
Sampled dwelling units are interviewed every quarter over the 
course of 12 months 

Levels of Observation Person, household 

Web Link http://www.statssa.gov.za/qlfs/index.asp 

 

 


