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Census: Complete enumeration every 10 or S years.
Population census collects basic items from all persons.
Agricultural census collects information from all farms, etc.

Main use of census: Can produce statistics at any level of
disaggregation. Local area statistics are needed.

Limitations: Only few items can be covered, expensive, not
current, and not timely.

Sample surveys: Observe only a portion of the population
according to a specified sampling design



Advantages: (1) Reduced cost relative to census. It is the
sample size that matters and not the population size in terms
of precision of estimates.

(2) Greater speed and scope: census may be impractical if
highly trained personnel or specialized equipment needed.
(3) Greater accuracy: less measurement errors with well
executed sample survey, 1.e. less non-sampling errors

(4) Current statistics: South African Quarterly Labour Force
Survey (QLFS); Monthly Canadian Labor Force Survey
(LES)

(5) Sampling in census: Long form used to collect more
detailed information from a sample (1 in 5 for the Canadian
Census).



Main steps 1n conducting a survey:

(1) Objectives of the survey clearly formulated prior to the
survey.

(2) Target population vs. survey population (population to be
sampled): under-coverage

(3) Data to be collected: not too many questions

(4) Degree of precision desired: sample size

(5) Method of measurement: self-administered questionnaire,
interview. Mode: mail, telephone, personal visit or
combination

(6) Questionnaire pretesting, field work organization



(7) Sampling frame: list of units

(8) Selection of the sample

(9) Data collection and data entry

(10) Edit and Imputation

(11) Summary and analysis of collected data

Reference: Cochran, W. G. (1977). Sampling Techniques, 3"
Ed., Wiley.

Questionnaire Design: (1) Pretest before survey. (2) Keep it
stmple and clear. (3) Use specific questions. (4) Relate
questions to the concept of interest. (5) Open-ended questions
or specified answer categories. (6) Questions that elicit
correct responses. (7) Avoid double negatives. (8) Question
wording. (9) Question ordering.



Measurement errors: (1) Not tell the truth: farmers in an area
with support program may underreport crop yields hoping for
more subsidies. (2) Not understand a question. (3)
Telescoping: experience as crime victim in the last 6 months
in National Crime Victimization Survey (NCVS). (4)
Interviewer effect. (5) Vague questions. (6) Question wording
and ordering

Reference: Lohr, S. L. (2010). Sampling: Design and
Analysis, 2™ edition, Brooks/Cole.



Errors 1n surveys: Sampling errors, non-sampling errors:
measurement errors, missing data: unit nonresponse and item
nonresponse, under coverage.

Sample Survey Setup

Finite population: U ={1,2,..., N}

Associated values: { y,..., yn }

Auxiliary values: {xg,...,x Jrelated to values of interest
known from a census or administrative records. Only the total
X tor the entire population and some sub-groups of the
population, e.g. Age/Sex/Race groups, may be known.
Sample: a subset s of U



Sample design: {s, p(s)} where s belongs to a set of samples
defined by the design.

p(s): known probability of selecting the samples.

Sampling scheme 1s used to implement a sample design.
Probability sampling: Design that ensures non-zero first order
inclusion probabilities 7; for every unit ie U

Basic sampling methods: Simple random sampling (SRS),
stratified SRS, cluster sampling, systematic sampling,
probability proportional to size (PPS) sampling. In practice, a
combination of the basic methods 1s used to select a sample s.

Data collected:{(i, y;, x;),i € s}



Simple parameters of interest:
e Total Y = y; +...+ yy =2 ;,cpy ¥; = Y (y):operator notation
eMeanY =Y /N
® Proportion: binary response
® Median
® Sub-population (domain) total » ;. ; y;=4Y
e Domain mean: ;Y =,Y/,;Nwhere ;4N is the unknown
domain size. Example of domain: age-sex group

More complex parameters: Regression coefficients, Income
inequality: Gini coefficient, low income proportion:
proportion of people below poverty line (half median
income).



Design-based (or repeated sampling) inference for the total

Design weights: d; =1/7;,ie s

Estimator of total: ¥ = Diesdiyi = Y( y)

Yis called the Narain-Horvitz-Thompson (NHT) estimator
Interpretation of Y: Sum of weight times the value for the

units in the sample. Data file will contain columns of
weights and corresponding values. Design weight d;may be

interpreted as the number of population units represented by
the sample unit i including the sample unit itself.
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Alternative expression forY :

Y'=2icudia;yi

a; =11f i e sand a; =0 otherwise

T; =P(ies) = E(q;)

NHT estimator 1s design unbiased 1f and only 1f the
inclusion probabilities 7;are positive for all the population

units: E P (Y)=Y noting that E(a;) = 7;

Variance of Y¥: Measure of precision and it involves joint
inclusion probabilities jj = E(a;a j):

V)= Yic jey (Tt = 7 )z = 2;)°=V ()
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if sample size n 1s fixed, where z; = y; / 7;

Sen-Yates-Grundy (SYG) variance estimator of ¥':

i j— 7 2 _ 2.0
L (g =) =S (D)= w(y)

v(¥)=Y% i
I<jes 7[1:]'

SYG variance estimator is design-unbiased for V (Y)

Estimated coefficient of variation (CV) of Y : s(Y)/Y often

expressed in percent.

Large sample 1—alevel confidence interval (CI) on Y :

Ye(Y —z,/05(Y), Y +z,/05(Y))
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Zg /2 = upper a/2 point of N(0,1)

Interpretation of CI: In repeated sampling according to
specified design, proportion 1— ¢ of intervals will contain
the true value Y.

Efficient sampling strategy: Find a combination of design
and estimator that minimizes the variance of the estimator
for a given cost or minimizes the cost for a given precision.
In practice, this ideal goal 1s not easy to achieve.
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Advantages of design-based approach: No models or
distributional assumptions. It provides valid large sample
inferences. But inference refers to repeated sampling.

Simple random sampling

Definition: All possible samples of size n have the same
probability of selection.

Properties: (1) 77; =n/N, TTjj = n(n—1)/{N(N —1)} for all
units i and j(#1).
2)Y = N (Sample meany) =(N/n)) ;v
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N P N
BV =N (1-1)=

S % = Population variance = { N /(N —1)}65

1—n/ N = Finite population correction (FPC)

(4) Unbiased variance estimator v(Y) is obtained from (3) by

replacing S % by the sample variance s%

Model-dependent approach: yy,..., ypy randomly generated
from some model. In particular, for SRS we assume them to

be IID random variables with mean & and variance G% . SRS
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design 1s non-informative and hence the sample also obeys
the assumed model.

Write the total as ¥ = .- . y; + 2., ¥; Where rdenotes the set

of non-sampled units. Under the assumed model, the best
linear unbiased estimator (BLUE) of 4 1s the sample meany.

The best predictor of y; for ie r 1s §; = y. Therefore the best
linear unbiased predictor (BLUP) of Yis

A

YAm :Ziesyi_l'zieryi :(N/n)zl'esyi =Y

The estimator is model-unbiased in the sense E,,(Y,, —Y)=0
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Note: In this special case both approaches give the same
estimator. It 1s both design unbiased and model unbiased.

Measure of variability = Mean squared prediction error =
2

E,(¥,-Y)* =V, (¥ -Y)= Nz“‘??

We replace O'Zby S% which is model-unbiased for o*to get

estimator of variance of Y,,. Hence we also get the same

variance estimator (and CI) under the two approaches but
Interpretations are different.
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Interpretation: Under repeated realizations of the population
values, proportion 1—of the CI will contain the realized
value of Y conditionally given the sample s.

Bayesian approach: An advantage of this approach 1s that it
provides inferences conditional on the data {(i, y;),i € s}, not

just on the sample s. But we need to assume a parametric
family of distributions for the responses y; and prior

distributions on the model parameters & and o’. We get a
predictive distribution of y;for i € rgiven the data. If no prior

information is available and we assume normality, then using
a non-informative prior, the Bayesian approach will give the
same answers as the other two approaches. But the
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interpretations are different and the intervals are called
credible intervals.

Domain Estimation

Parameters

Domain total ;Y =2;c ;v =2icy g ;¥ =Y (gay)
Domain size Nj =2 ;cpy 44; =Y (ga)

Domain mean ,Y=,Y/ ;N =Y (yay)/Y(,a)
ga;=11funitie d and ;a; =0 otherwise

49;y; =y;ifunit ie d and 4 a;y; =0 otherwise
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Estimators
Method: Simply replace Y (.) by Y(.)

Domain total: ;¥ =Y (yay) = 2ies(d)4diVi

s(d) = sample of units belonging to domain d

Data file: Simply multiply weight d;by the corresponding y;
in the data file and sum over the sample units i belonging to
s(d). Equivalently, multiply d; by ;a;y;and sum over all
sample units i € s

Variance estimator: v( dY )=v(gzay)
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Domain size: ;N =Y (ya) = 2ies(d)4i

Properties: Estimators dY and N are design unbiased. They

are called direct estimators or domain-specific estimators
because they use data only from the domain of interest.

Domain mean: d? =,Y/ 4N = ratio of two estimators

Note: Domain size or domain frame are not known. If domain
size 1s known but not frame we call 1t post-stratum and 1if both
are known we call 1t stratum.

Properties: d? in general 1s design biased but approximately
design unbiased for large n.
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Variance estimator: v( d? ) = v{ gz a( y—d? ) 4N}
This 1s obtained by using the approximate formula for the
variance of the ratio of two estimators of totals.

Note: v( d? ) 1s obtained by replacing y;by z; =
1a;(vi—4Y) ;N in the formula for v(y). Note that z;is 0 if
i¢dand z; =(y;—4Y)/ 4N ified.

Note: We can compare the means of two different domains,

for example difference of mean incomes in two different age-
SEX groups.

Simple random sampling: d? =,y (domain sample mean)
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: : - n.ddy
Variance estimator: v(y;) = (1——)

N dn

. . y) . .
4 = domain sample size; ;s sample domain variance

Domain total: ;¥ = (NTn)(Licsa) Vi) = (N gn/n)yy=4N 4y
Note: One can write ;Y = N where @ is the mean of
u;=,4a; y;1n the sample. Hence

Variance estimator: v(dY) = N2(1 — n/N)(sb% /n)=v(u).

Note: 53 will be large because u; takes the value O when unit

i 1s not in the domain d: Price to be paid (in terms of
increased variance) for not knowing ; N.
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Calibration Estimators: use of auxiliary information

Suppose that auxiliary information in the form of known
population totals X =(Xy,...,X p)Tis available and that the

auxiliary vector x;1s also observed for ie s: {(i, y;,x;),i€ s }.

Aim of calibration 1s to find new weights (w;,i e s) such that
a specified distance measure between design weights d;and
revised weights w; 1s minimizes subject to > .. ;w;x; = X.
Chi-squared distance: ® = . . (w; — dl-)2 /(d;q;)

where g;1s a “tuning constant” for unit :.
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Solution:

wi = {1+ (X = ) (i qidixind )7 (qix) Yy = gd;
Note: Weight w;depends only on x;. The resulting estimator
of Y1s called the generalized regression (GREG) estimator:

A A A T A
YGR(Y) = 2iesWiyi =Y +(X -X)" B
B = (ZiESdiQixiXiT)_l)ziesdi%’xiyl’ : weighted regression

Note that that YGR (x) = X and GREG ensures consistency of
estimators when aggregated over different variables attached

to the sample units: YGR(yl) + YGR(yz) = YGR(y1 +y2)
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Domain estimation: Domain total Y;1s estimated as
dYGR = 2ics()yWiYi =YGR(aaY)

Properties of GREG: YGR 1s approximately design unbiased
for large sample sizes. A variance estimator 1s given by
v(YGR) =v(ge) where ¢; = y; — xl-T B are the regression
residuals. One can also use v(e) as the variance estimator but
v(ge) reduces underestimation caused by v(e). If x explains y
through linear regression, then the variability of residuals e;
will be smaller than the variability of y; and hence GREG

estimator will be more efficient than the simple NHT
estimator Y. GREG estimators are extensively used in
practice.
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Special cases: (1) Suppose x 1s a scalar and tuning constant

q; =X; ! Then Y reduces to the widely used ratio estimator
Yp = /X)X.Here g; = X /X does not depend on i.

(2) Suppose we partition U into G post strata U , with known

population sizes N,. Let x; = (xy;,... sz) where xo; =11f
i€ Uy and x,; =0 otherwise. Then Yp reduces to the post-
stratified estimator Ypg = 2. p (N P / N P )Y p where Y p and N P
are the direct estimators of the total Y, o and the size N 0 for the

post-stratum g: Yg = Zies(g)diYiaNg = 2ics(g)di- Note that
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s(g) 1s the sample falling in the post stratum g. The estimator
Ypg calibrates to the known post-strata sizes: ¥Ypg (xg) =N,

(3) GREG estimator can be used to calibrate to known
marginal post-strata sizes of two or more post-stratification
variables, for example age and sex marginal counts. (4)
Consider SRS, tuning constant g; =1 and one auxiliary

variable x;such that x; = (1, xl-)T. In this case GREG estimator
reduces to the customary regression estimator

Yrec = N{y+b(X —X)} where y and xare the sample means
and b= (y; = Y)(x; —X)/ 25 o (x; — )_c)zis the customary
least squares estimator of the slope coefficient in the linear
regression of y on X.
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Model dependent approach: (1) Consider regression through

the origin: E, (y;)=fx; and V,, (y;) = l-2 = szl- and assume

that the model holds for the sample. In this case the BLUP of
the total Y for any sampling design reduces to

Y, =Y. v+, yiwhere $; = fx;and B is the weighted
least squares estimator (WLS) of S given by

2 2, 21 _ -
B=Cics%iyi! 07 ) Ziesxi 107) = y/x.
It 1s easy to verify that Ymreduces to the ratio estimator

Ym = (y/x)Xregardless of the design. Only under SRS the
BLUP agrees with the GREG estimator of case 1. (2) Suppose

the model is E,,(y;) = By + b1x;, V., (y;) = 0. In this case the
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BLUE of y;forie ris 9; =by+byx; =y +b(X —x), where
by = y —bxand b; = b are the least squares estimators of /3,

and f;. BLUP of the total Y is Ym = N{y+b(X —x)}for any

design provided the model holds for the sample. It follows
that the BLUP agrees with the GREG estimator only under
SRS.

Model-assisted Approach: Here we assume only a “working”
model and the resulting design-based inferences are
asymptotically valid regardless of the validity of the assumed
working model. If the working model 1s good, then we gain in
terms of efficiency of the estimators.
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Method: Suppose le 1s the predictor of y;for i e Ubased on
x; and a working model. Then we can write

Y=>cu le + ey € Where e; = y; — yl-o are the prediction

errors. If the model 1s good, then the variability of the
predictor errors e;will be small compared to the variability of

y;. Now the population total of the e;1s not known so we
replace it by the corresponding NHT estimator £ = >esdi€

to get the model assisted estimator ¥,,, =3 .y, le + E. This

estimator 1s asymptotically design unbiased regardless of the
validity of the working model and yet could lead to increased
efficiency if the working model 1s good.
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Working model: E,, (y;) = xl-T,B, Vo, (y;)= 01-2 forie U
If the population values y;and x;were known then the
weighted least squares estimator of /5 is the WLS estimator

B=T"'t, where T = Dicl xl-xl-T /O'l-zand F=2icy XY /0'1-2.
Now replace Tand ¢ by the corresponding NHT estimators 7
and 7to get B = 7717 . This leads to the predictor yl-o = xl-T Bfor
ie U and the resulting model-assisted estimator Y, ,reduces

toY+(X - X )T B. This is a GREG estimator and it is

identical to the calibration estimator i1if we choose the tuning

constant as g; = Gl-z , provided the user-specified calibration

totals match the x —totals corresponding to the auxiliary
variables in the working model.
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If the working model is different, say includes a quadratic
term, then calibration and model assisted estimators do not

agree 1f the user specifies only the total of x. We need to

include the total of the xl-2 values in the calibration in order to

match the model-assisted estimator. So the two concepts are
fundamentally different. But calibration has the advantage
that we use the same adjusted weights w;for all y —variables.

As a result, calibration estimator can lead to poor efficiency if
the response variable y is not related to the calibration

variable.
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Projection Estimator: An important special case occurs when
E=0,leadingto ¥,, = XB=Y, le . The ratio estimator
and the post-stratified estimator are special cases of a
projection estimator. A sufficient condition for £ = Ois that

Gl-z = /ITxl-for some vector A. For the projection estimator the

weights are given by w; =d; g;where g; = X TT_lxl- / 01-2.

2aiwhere o %is unknown

and a;is known. The estimator Y, , does not depend on o’

Note that domain GREG does not have the projection form

Note that we need only write Gl-z =0

and using the sum of the predicted values le in the domain as
the domain estimator leads to design-inconsistent estimator.
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Stratification

(1) Strata Uy, (h=1,..., L) represent a partition of U . Frames

of strata are known. Example: Province X NAICS for
business surveys in Canada (NAICS: North American
Industry Classification System, 3 or 2 digit code).

(2) Advantages: (a) Administrative convenience: separate
field offices. (b) Permits handling sampling problems that
differ in different parts of the population. (¢) Gain in
precision.

Basic theory: Let Y =Y, (y) be the total for stratum /. Then
Y =Y| +...+Y;. Sample design consists of independent

35



samples s;from the L strata with specified probabilities
pr(sy),h=1,.,L.Let Y, =Y, (y) be the NHT estimator of Y},
based on the specified design. Then the stratified NHT
estimator of Yis ¥, =Y, (y)=Y; +...+Y; . Because of

independent sampling, V(Yst) = hV(Yh) =24Vn(y).
Similarly, v(fst) =D V(YAh) =21V ()).

Stratified SRS: A sample of size ny, 1s selected by SRS from
the Ny units in stratum /. In this case we have

¥ = Ny, Vi (9) = Njg A=y, | NSy [ 1)
where yj, 1s the sample mean and S ;%yis the population

variance in stratum /. The variance estimator vy (y) 1S
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obtained by replacing S %ywith the sample variance S;Zly,

assuming ny, = 2 for all 4.

We can write V(Y,) = Ag + Y., A, / nj, where A, = N;%S,%y and
Ag =2 NhS%y. A simple cost function 1s C = ¢y + > 5, cpny,

where cyis the fixed overhead cost and ¢y, 1s the cost per unit
in stratum A.

Design i1ssues: (a) Number of strata L. (b) Construction of
strata. (¢) Sample size allocation to strata. Using a large
number of homogeneous strata increases precision of
estimation. In large-scale socio-economic surveys,
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stratification 1s done to the extent that two primary sampling
units (clusters) are selected from each stratum to permit
variance estimation.

Construction of strata: size stratification

Suppose that we know some population size measures, say
x1 < Xy <...<xp related to the variable of interest y (for

example size of firms in a business survey). Equal coefficient
of variation (CV) within strata: S7, / X;=...=87, /X can
lead to efficient estimators. Let ky = min(x;) and

k; = max(x;). Then the L strata are defined by the points
ki,....ky _isuch that kg < ki <...<kj_{ <kj, where
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ky =ko(kp /ko)h/L for h=1,...,L—1 (Gunning and Horgan,
Survey Methodology, 2004, 159-166).

Example: Suppose L =4,ky =5,k; =50,000. Then

kp =51 O)h which leads to the following stratification
boundaries: 15 — 50150 — 500500 — 500015000 — 50000l

Sample size allocation: stratified SRS

Proportional allocation: Given the strata, let Nj, be the size of
stratum £ such that > ; N;, = N. Proportional allocation of the
total sample size n 1s given by ny;, =nW; where W), = N;, / N
1s the relative size of stratum /. Note that proportional
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allocation does not depend on the variable of interesty. Hence,
it can be 1nefficient especially for skewed populations.
However, the estimator Y, under proportional allocation 1s

more efficient than ¥ under simple random sampling if N, I
1s negligible, although efficiency gains are modest.

Optimal allocation: Given the L strata suppose we want to
draw simple random samples of sizes nj, from the strata. We

assume a simple cost function C =cq + > 5, c,ny,, where ¢ 1S
the fixed overhead cost and ¢y, 1s the cost per unit in stratum

h. Objective 1s to minimize the cost with respect to sample
sizes ny, subject to a fixed variance
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Vo=V(¥y)=Ag+3, A1 1y,
202 2
Ap =NjShy, Ao =—ZnNpSpy.
Alternatively, we may want to fix the cost and minimize
V(Y,,). In either case, we have

VAR ey
Y Annlen

Proportionality factor A is determined by the constraint used.
If cost is fixed, then A = C —¢(. In practice, we use the known

population values of some variable x correlated with y 1s
used (for example, from the census or administrative records).

ny, (opt) =4
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Neyman allocation: Suppose ¢, = ¢ for all 4 and cost C 1s
fixed, then the total sample size is n=(C —cp)/c and

ny, (0pt) =11/ Ay / XAy,

Multiple characteristics: Suppose we have p variables of
interest and Yl 18 the estimator of the total Y;for the variable

[=1,...,p. Let V(Yl,st) =V =Ay; + 24, Ay 1y, Objective 1s to
minimize the cost C — ¢y with respect to the ny, subject to

fixed tolerances Vjj;0on the variances Vj; that 1s
Vl SVOZ,Z =1...,p.
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We transform the problem into a convex programming
problem by letting m;, =1/n;. Then we are minimizing a

separable convex function }.; ¢y, / my, with respect to the my,
subject to linear constraints Ag; + 2.5, Ayymy, <Vpp.l=1,..., p.
Additional constraints on n;, can be imposed. For example,
the constraint 2 < ny, < Nj, (equivalently Ny, < my, <1/2)

ensures unbiased variance estimation and stratum sample
sizes ny, always below the associated population sizes Ny,.

Construction of strata under Neyman allocation: Cumulative

\/f rule minimizes the variance under Neyman allocation.
Rule is to form the square root of frequencies f and choose
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the stratification points such that approximately equal sizes
on cum ./ f are obtained.

Take-all stratification: In Business Surveys, 1t 1s a common
practice to have a take-all stratum of firms in the sense that all
the firms are sampled. In our notation, boundary point k; _{

creates the take- all stratum L and n; = Ny . Let

ap =np/(n—Ny), h=1,..,L—1sothat > ,a; =1. Under SRS
within the sampled strata, we have

V(X )= SECING A= ny | NS ).

where § ;%xis a function of the stratification points k;_jand k.
Now substituting nj, = aj,(n— N ) in V(X ,) and using
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Neyman allocation ay, = Ny,Sy,, /Zil;;llN 1S p, and solving for
n for a fixed variance V(X ;) we see that n is a function of
ki,...,ky _1. Taking the derivative of n with respect to k;and
equating it to 0, we get quadratic equations of the form
aykf + Bk, + v, =0,h=1,...L—1

where a;,, B}, 7, are functions of kj,_1,kj,, kj 1.

Algorithm: (1) Start with Gunning et al. boundary points, say

k{,...,k7 _1 and compute the corresponding &y, 53}, ¥},.
Calculate n and allocate n— N to get ay,. (3) Replace {k},}
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by {k; } where kjis the solution of the quadratic equation
using the starting values {7, }. (4) Repeat above steps until
convergence.

IPPS sampling

To select primary sampling units (or clusters) i varying in
size x;which 1s related to cluster total Y;, inclusion probability
proportional to size (IPPS) sampling 1s often used to increase
efficiency of estimation. It has also other desirable features in
the context of two-stage sampling within strata (discussed
later).
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We want to select n clusters by IPPS sampling without
replacement such that the inclusion probability z;for cluster i

1s equal to np;, where p; = x; / X and X 1s the known
population total of the sizes x;. We assume np; <1 for all
clusters i. In the case of single stage cluster sampling the
NHT estimator of the total Y is ¥ =3,c (d;Y;, where

d; = (npl-)_l. It now follows that if the size measures are

strongly related to the corresponding cluster totals, the NHT
estimator will lead to significant reduction in the variance.
There are many methods of IPPS sampling and we consider
only one such method that 1s commonly used to select
clusters in stratified two-stage sampling.
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Systematic PPS sampling: (1) Arrange the N sizes in some
order, say xi,...,xy. (2) Then the n selected clusters are those

whose labels j satisty

—1
Z X; <—(r+k)< Zx
i=1 =1

for integers k =0, 1, 2,--- (n-1) , where r 1s a random number
between O and 1. This 1s equivalent to selecting a random
number between 0 and X /n and stepping up by X /n.
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Example: n=3, N =8 and X =300 so that X /n =100.
i: 1 2 3 4 5 6 7 8

X;: 15 81 26 42 20 16 45 35

J
x;0 15 96 122 164 184 200 245 300
=1

l

36 136 236

Random number 1007 = 36. This gives 36 for k =0, 136 for
k =1 and 236 for kK = 2. Units 2, 4 and 7are selected for the
sample.



Two-stage Sampling

Population consists of N clusters with M; elements in cluster
1 (XM ;=Mjg).Y; denotes the total for cluster i.A sample s

of n clusters is selected from the N clusters in the population
according to IPPS design using size measures p; so that

r; = np;. Suppose m;elements s(i)are drawn by SRS from
cluster 7 if 1t 1s included 1n the sample s.

If the cluster totals are known then the NHT estimator of the
total is ¥ =3, sY; /(np;). We simply replace Y; by its

estimator ¥; = M y,, where y; =m; Iy jes(i) Yijto get

50



Yy =Xics Y l(np;) = YiesX jes(i)dij Vij

dij =/np;)(M; /m;): design weight attached to the sample

element j in the sample cluster i.

Special case: Suppose all the population cluster sizes are
known and we use size measures proportional to cluster sizes:
pi=M;/ M. In this case d;; = M /(nm;).

Self-weighting: Suppose we wish to use equal work loads:
m; = m. Then all the design weights are equal to

d = M /(nm) which 1s the inverse of the overall sampling
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fraction. Estimator Ym 1s equal to the product of inverse
overall sampling fraction and the sample total >; > ; y;; .

General case of self weighting:

m; = (expected overall sampling fraction){M; /(np;)}

Variance estimator: An unbiased variance estimator of Y, is
the sum of two components 7 and 75, where
Ti = copy of the variance estimator in single stage sampling

of clusters with Y; replaced by Y;: requires joint inclusion
probabilities
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A

T> = copy of the estimator 1n single stage cluster sampling
with Y; replaced by the estimator of conditional variance of

YAZ' Vl :Miz(l—mi/Ml‘)S%).

Remark: Unbiased variance estimator 1s seldom used 1n
practice because of its somewhat complex form. Instead, it 1s
a common practice to use the formula for PPS sampling with
replacement as an approximation:

Vv, (Ym) = sg /n
n
where sg = 2 (z; — 2)2 /(n—1) 1s the sample variance of the
i=1
values z; =Y; /(np;) = nY jes(i)d;jy; fori=1L...n are
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weighted sample cluster totals. The above approximation
forms the basis for re-sampling methods such as the jackknife,
balanced repeated replication (BRR) and the Rao-Wu
bootstrap, in the sense that the re-sampling variance estimator

of Y, reduces to v, (¥,,). Rao-Wu bootstrap is widely used in
Statistics Canada.

Remark: In practice, design weights are first adjusted for unit
nonresponse; for example within sample clusters as done in
the South African QLFS (households within PSUs). In
general, weighting classes are formed on the basis of
auxiliary information observed for all the sample units and
then adjustments are made within each weighting class. After
non-response adjustment, the adjusted weights are calibrated
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to agree with known auxiliary totals, leading to final weights
{sz } which are reported in the data file along with the

associated data values { y;; }. The estimator of Y'1s then given

by YAmw = Zizjwijyij

Stratified two-stage sampling: We introduce the additional
subscript / to denote strata and note that ¥, =3, Y =
2h2i 2 jApij Yhij

Similarly the final estimator Y,,,,,, is obtained from the final
weights wy,;;
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Approximate variance estimator:

V(YAm) =2h Sl%z /nh

where s;zlz 1s the sample variance of the n;, weighted sample
cluster totals zy; =ny X jdp;;yp;; within stratum 7.

Efron’s Bootstrap: IID case

Suppose yi,..., y,, 1s an IID sample from some distribution
and suppose @ is the parameter of interest, for example the
mean or the median of the unknown distribution. Suppose we
also have an estimator & of € based on the random sample.
We want to find a computer intensive but routine method to
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calculate the variance estimator of 8 and confidence intervals
for 6.

Bootstrap sampling: (1) Draw a sitmple random sample with
replacement of size n from the original sample of size n and

denote this bootstrap sample as yik eees y:; (2) Compute the

associated estimator of & and denote it as @ . (3) Repeat (1)
and (2) a large number of times, say B to get 491* peees 6’2. (4)
Bootstrap variance estimator of & is then given by

A _1 B %k A 2
vBooT (0) =B bZ 1{919 - 6)
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Remark: One could replace @ by the average of the bootstrap
estimates HZ

Special case: 8=y = vgooT(y) = n—_l{S§ /n}= S% /n

n
(5) Percentile method for CI: Approximate the distribution of
6 — 0 by the known bootstrap distribution of 8 -0
Suppose B =1000 and let H(*l) <...< 6’(* B) denote the ordered
values. Let a = H(*50) —@ and b = 05950) —8.Then 90%

confidence interval on @ is obtained from a < 8 — @ < b which
1s equivalentto 6 -b<0<0—a.
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Rao-Wu bootstrap: stratified two-stage sampling

(1) Select my, = ny, —1 clusters from the n; sample clusters in

stratum /2 by SRS with replacement. Let mzi be the number of

times sample cluster (hi) 1s selected in the bootstrap sample.
np

(2) Bootstrap design weights: d Zij =d hiiji 0
ny —

(3) Substitute d Zik for dj;; 1n the formula for the final weight
Whik to get WZik- Use the final bootstrap weights in the
estimator & to get 6" for example Y,:W.

(4) Repeat steps (1) to (3) B times to get 91* yees HZ.
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(5) Bootstrap variance estimator of 0

veoor(9) = B1x, (6, —)*

Note: Statistics Canada uses B =500 bootstrap replicates.

60



Examples of On-going Surveys

Example 1: National Crime Victimization Survey (United States)

Sponsor U. S. Bureau of Justice Statistics
Collector U. S. Census Bureau
Main Objectives are:
e Develop detailed information about the victims and the
consequences of crime
Purpose e Estimate the number and types of crimes not reported

to police
e Provide uniform measures of selected types of crimes
e Permit comparisons over time and by types of areas

Year Started

1973 (previously called the National Crime Survey, up to 1992)

Target Population

Adults and children 12 or older — civilian and non-
institutionalized

Sampling Frame

U. S. households, enumerated through counties, blocks, listed
addresses, lists of members of the household

Sample Design

Multi-stage, stratified, clustered area probability sample, with
sample units rotating in and out of the sample over three years

Sample Size

About 41,00 households (78,600 persons)

Use of Interviewer

Interviewer administered

Mode of Administration

Face-to-face and telephone interviews

Computer Assistance

Paper questionnaire for 70% of the interviews, both face-to-
face and telephone interviews (computer assisted) for 30% of
the interviews

Reporting Unit

Each person age 12 or older in household reports for self

Time Dimension

Ongoing rotating panel survey of addresses

Frequency

Monthly data collection

Interview per Round of Survey

Sampled housing units are interviewed every six months over
the course of three years

Levels of Observation

Victimization incident, person, household

Web Link

http://www.0ojp.usdoj.gov/bjs/cvict.htm




Example 2: Quarterly Labour Force Survey (South Africa)

Collector Statistics South Africa
Main Objectives are:
e Estimate numbers of persons employed, unemployed
Purpose and economically inactive, the corresponding rates at

the national, provincial and metro levels for the
following estimation domains: 1) Age Groups, 2) Sex,
3) Race Categories, 4) Industry Groups, etc.

Year Started

2008

Target Population

Persons 15 — 64 years — civilian and non-institutionalized

Sampling Frame

Households in South Africa, enumerated through PSUs
(Census EAs), addresses listed through field listing, lists of
members of the household during interviewing

Sample Design

Two-stage, stratified, clustered area probability sample, with
sampled dwelling units rotating out of the sample after four
quarters

Sample Size

About 30,00 households (98,000 persons)

Use of Interviewer

Interviewer administered

Mode of Administration

Face-to-face interviews with paper questionnaire

Computer Assistance

None during data collection

Reporting Unit

Any adult in the in the household can report for all persons

Time Dimension

Ongoing rotating panel survey of dwelling units

Frequency

Monthly data collection for the survey quarter

Interview per Round of Survey

Sampled dwelling units are interviewed every quarter over the
course of 12 months

Levels of Observation

Person, household

Web Link

http://www.statssa.gov.za/glfs/index.asp




