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Introduce symmetry to obtain further parsimony so models
can be well estimated when number of variables |V | higher
than number of observed units n, n << |V |.

Also, sometimes there are natural and inherent symmetries in
problems under study, e.g. when these involve twins,
measurements on right and left sides, dimensions of a
starfish, etc.
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• Models with symmetry in covariance are classical and
admit unified theory (Wilks, 1946; Votaw, 1948; Olkin
and Press, 1969; Andersson, 1975; Andersson et al.,
1983);

• Stationary autoregressions (circular) (Anderson, 1942;
Leipnik, 1947);

• Spatial Markov models (Whittle, 1954; Besag, 1974;
Besag and Moran, 1975);

Steffen Lauritzen — Gaussian Graphical Models with Symmetry — Swiss Winterschool 2015, Lecture 3
Slide 3/52

un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

General combinations with conditional independence are
more recent:

(Hylleberg et al., 1993; Andersson and Madsen, 1998;
Madsen, 2000; Drton and Richardson, 2008; Højsgaard and
Lauritzen, 2008; Gehrmann, 2011b; Gottard et al., 2011;
Gehrmann, 2011a; Gehrmann and Lauritzen, 2012).

Although literarure is steadily growing.
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Gaussian graphical models with symmetry

Several possible types of restriction:

• RCON restricts concentration matrix;

• RCOR restricts partial correlations;

• RCOV restricts covariances

• RCOP has restrictions generated by permutation
symmetry.
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Empirical concentration matrix of examination marks of 88
students in 5 mathematical subjects.

Mechanics Vectors Algebra Analysis Statistics

Mechanics 5.24 −2.44 −2.74 0.01 −0.14

Vectors −2.44 10.43 −4.71 −0.79 −0.17

Algebra −2.74 −4.71 26.95 −7.05 −4.70

Analysis 0.01 −0.79 −7.05 9.88 −2.02

Statistics −0.14 −0.17 −4.70 −2.02 6.45

.
Data reported in Mardia et al. (1979)
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RCON model: Mathematics Marks

Data support model with symmetry restrictions as in figure:

Mechanics

Vectors

Algebra

Analysis

Statistics
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Elements of concentration matrix corresponding to same
colours are identical.
Black or white neutral and corresponding parameters vary
freely.
RCON model since restrictions apply to concentration matrix
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Cox and Wermuth (1993) report data on personality
characteristics on 684 students:

Table below shows empirical concentrations (×100) (on and
above diagonal), partial correlations (below diagonal), and
standard deviations for personality characteristics of 684
students.

SX SN TX TN

SX (State anxiety) 0.58 −0.30 −0.23 0.02

SN (State anger) 0.45 0.79 −0.02 −0.15

TX (Trait anxiety) 0.47 0.03 0.41 −0.11

TN (Trait anger) −0.04 0.33 0.32 0.27

Standard deviations 6.10 6.70 5.68 6.57
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RCOR model

Data strongly support conditional independence model
displayed below with partial correlations strikingly similar in
pairs:

❡

❡ ❡

❡TX

SX

TN

SN

Scales for individual variables may not be compatible. Partial
correlations invariant under changes of scale, and more
meaningful.
Such symmetry models are denoted RCOR models.
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RCOP model: Frets’ heads.

Data from Frets (1921). Length and breadth of the heads of
25 pairs of first and second sons. Data support the model

�
� �

�B1

L1

B2

L2

Distribution unchanged if sons are switched. RCOP model as
determined by permutation of labels.

Both RCON, RCOV, and RCOR because all aspects the
joint distribution are unaltered when labels are switched.
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Undirected graph G = (V ,E ).

Colouring vertices of G with different colours induces
partitioning of V into vertex colour classes.

Colouring edges E partitions E into disjoint edge colour
classes

V = V1 ∪ · · · ∪ VT , E = E1 ∪ · · · ∪ ES .

V = {V1, . . . ,VT} is a vertex colouring,

E = {E1, . . . ,ES} is an edge colouring,

G = (V, E) is a coloured graph.
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RCON model

1 Diagonal elements K corresponding to vertices in the
same vertex colour class must be identical.

2 Off–diagonal entries of K corresponding to edges in the
same edge colour class must be identical.

The set of positive definite matrices which satisfy these
restrictions is denoted S+(V, E) = S+(G).
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✉

✉ ✉

✉Y4

Y1

Y3

Y2

Corresponding RCON model will have concentration matrix

K =





k11 k12 0 k14

k21 k22 k23 0

0 k32 k33 k34

k41 0 k43 k44




.
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Likelihood function

Consider a sample Y 1 = y1, . . . ,Y n = yn of n observations
of Y and let W denote the matrix of sums of squares and
products

W =
n�

ν=1

Y ν(Y ν)∗.

The log-likelihood function based on the sample is

log L =
n

2
log det(K )− 1

2
tr(KW ) (1)

Note that the restrictions defined are linear in the
concentration matrix K so RCON model is linear exponential
model.
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Likelihood equations

For each vertex colour class u ∈ V let T u be the |V |× |V |
diagonal matrix with entries T u

αα = 1 if α ∈ u and 0
otherwise.

Similarly, for each edge colour class u ∈ E let T u have entries
T u
αβ = 1 if {α,β} ∈ u and 0 otherwise, i.e. the adjacency

matrix of u, e.g.

T blue =





1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0




;T red =





0 1 0 0

1 0 1 0

0 1 0 0

0 0 0 0




.

Again, T u, u ∈ V ∪ E form a basis for S(V, E).
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Likelihood function then becomes

log L(K ) =
n

2
log(detK )−

�

u∈V∪E
ku tr{T uW }/2.

MLE is obtained by equating canonical sufficient statistics to
their expectation, i.e.

tr(T uW ) = n tr(T uK−1), u ∈ V ∪ E , (2)

provided such a solution exists.
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The entries of the information matrix are

I (θ̂)uv = f tr(K uΣ̂K v Σ̂)/2. (3)

The likelihood equations can thus be solved by Newton
iteration, provided appropriate starting values can be found.

Alternatively, Jensen et al. (1991) described a globally
convergent algorithm, iterating one parameter at a time,
using Newton’s method on the f th root of the reciprocal
likelihood function; in this instance yielding the iterative step

θu ← θu +
∆u

tr(K uΣ̂K uΣ̂) +∆2
u/2

(4)

with ∆u = tr(K uW )− f tr(K uΣ).
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Fitted concentrations (×1000) for examination marks
assuming the RCON model displayed.

Mechanics Vectors Algebra Analysis Statistics

Mechanics 6.30 −3.38 −3.38 0 0

Vectors −3.38 10.29 −3.38 0 0

Algebra −3.38 −3.38 24.21 −6.65 −3.38

Analysis 0 0 −6.65 10.29 −3.38

Statistics 0 0 −3.38 −3.38 6.30

The model displayed earlier yields an excellent fit with a
likelihood ratio of −2 log LR = 7.2 on 7 degrees of freedom,
when compared to the butterfly model without symmetry.
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RCOR models

1 Diagonal elements of K corresponding to vertices in
same vertex colour class must be identical.

2 partial correlations along edges in the same edge colour
class must be identical.

The set of positive definite matrices which satisfy the
restrictions of an RCOR(V, E) model is denoted
R+(V, E) = R+(G).
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Define A as diagonal matrix with

aα =
�

kαα, α ∈ u ∈ V

We can uniquely represent K ∈ R+(V, E) as

K = ACA,

where C has all diagonal entries equal to one and
off-diagonal entries are negative partial correlations

cαβ = −ραβ |V \{α,β} = kαβ/
�

kααkββ = kαβ/(aαaβ).

Vertex colour classes restrict A, whereas edge colour classes
restrict C .
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Likelihood equations

Although restrictions linear in each of A and C , they are in
general not linear in K .

RCOR models are curved exponential families.

The likelihood function becomes

log L =
n

2
log det{C}+ n

�

u∈V
log au tr(T

u)− 1

2
tr{CAWA}

log L concave in A for fixed C and vice versa, but not in
general jointly.
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Differentiation yields the likelihood equations

tr(T uAWA) = n tr(T uC−1), u ∈ E ; tr(T uACAW ) = n tr(T u), u ∈ V.

MLE is not necessarily unique.

If the MLE exists uniquely, an alternating algorithm
converges to the MLE, alternating between maximizing in A
for fixed C and conversely.
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Anxiety and anger

Fitted concentrations (×100) (on and above diagonal) and
partial correlations (below diagonal) for RCOR model:

SX SN TX TN

SX (State anxiety) 0.59 −0.31 −0.22 0

SN (State anger) 0.46 0.78 0 -0.15

TX (Trait anxiety) 0.46 0 0.40 -0.10

TN (Trait anger) 0 0.31 0.31 0.28

Fitting the RCOR model yields likelihood ratio
−2 log LR = 0.22 on 2 d.o.f. comparing with the model
without symmetry.
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Let G be permutation matrix for elements of V . If
Y ∼ N|V |(0,K ) then GY ∼ N|V |(0,GKG

∗).

Let Γ ⊆ S(V ) be a subgroup of such permutations.

Distribution of Y invariant under the action of Γ if and only if

GKG ∗ = K for all G ∈ Γ. (5)

Since G satisfies G−1 = G ∗, (5) is equivalent to

GK = KG for all G ∈ Γ, (6)

i.e. that G commutes with K .
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An RCOP model generated by Γ ⊆ Aut(G) is given by
assuming

K ∈ S+(G, Γ) = S+(G) ∩ S+(Γ)

where S+(Γ) is the set of positive definite matrices satisfying

GK = KG for all G ∈ Γ.
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An RCOP model can also be represented by a graph
colouring:

If V denotes the vertex orbits of Γ, i.e. the equivalence
classes of

α ≡Γ β ⇐⇒ β = G (α) for some G ∈ Γ,

and similarly E the edge orbits, i.e. the equivalence classes of

{α, γ} ≡Γ {β, δ} ⇐⇒ {β, δ} = {G (α),G (γ)} for some G ∈ Γ,

then we have

S+(G, Γ) = S+(V, E) = R+(V, E).

Hence an RCOP model can also be represented as an RCON
or an RCOR model with vertex orbits as vertex colour classes
and edge orbits as edge colour classes.
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❡

✉ ❡

✉Y4

Y1

Y3

Y2

This colouring is generated by permutations (13), so model is
RCOP.

Steffen Lauritzen — Gaussian Graphical Models with Symmetry — Swiss Winterschool 2015, Lecture 3
Slide 27/52

un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

✉

✉ ✉

✉Y4

Y1

Y3

Y2

This graph is regular (Siemons, 1983), but symmetry is not
generated by permutations.
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Likelihood equations

Representing an RCOP model as an RCON model yields the
likelihood equations

tr(T uW ) = tr(T uK−1), u ∈ V ∪ E ; Σ−1 ∈ S+(V, E). (7)

However, for RCOP models these equations are equivalent to

tr(T �W ) = tr(T �K−1), � ∈ V ∪ E ; K ∈ S+(G), (8)

where

W =
1

|Γ|
�

G∈Γ
GWG ∗.

Hence, RCOP models can be fitted by Iterative Proportional
Scaling, replacing W with W .
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Frets’ heads

Observed concentrations (×100) (on and above diagonal)
together with fitted concentrations for RCOP model.

L1 B1 L2 B2

L1 (Length of head of first son) 3.21 −1.16 −0.78 −1.11

B1 (Breadth of head of first son) −1.71 2.21 −0.50 0.48

L2 (Length of head of second son) −1.42 0 2.67 −1.89

B2 (Breadth of head of second son) 0 −1.83 −1.71 3.37

Fitted concentrations 2.89 2.44 2.89 2.44

The likelihood ratio comparing to model without symmetries
is equal to −2 log LR = 5.18 on 5 degrees of freedom.
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The additional symmetry reduces the number of observations
necessary for existence of the MLE.

Uhler (2012) uses computational algebraic geometry to
investigate all edge regular graphs with four vertices but has
no complete result nor a general principle for calculating the
number of necessary observations.
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✉

✉ ✉

✉Y4

Y1

Y3

Y2

Symmetry is not generated by permutations, but n = 1
observations is sufficient for existence of the MLE.
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❡

✉ ❡

✉Y4

Y1

Y3

Y2

This colouring is generated by permutations (13) but n = 2
observations are necessary to ensure existence of the MLE.

For all other RCOP models on this graph, n = 1 observation
is sufficient.
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Game between Forecaster and Nature:

Forecaster quotes probability distribution Q for a random
quantity X . Then Nature reveals X = x .

How well did Forecaster do? A score is calculated S(x ,Q)
representing a loss to Forecaster. The function S(x ,Q) is a
scoring rule (Good, 1952; McCarthy, 1956).

A common example of such a scoring rule is the logarithmic
score

S(x ,Q) = − log q(x)

where q(x) is the density of Q w.r.t. some fixed measure on
X .
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We can extend the definition of a scoring rule to S(P ,Q) for
any probability distribution P as

S(P ,Q) = EX∼P{S(X ,Q)} =

�
S(x ,Q)P(dx)

and further, using the right-hand expression, to S(µ,Q) for
any positive and finite measure. Then S is linear in the first
argument.

A scoring rule is proper if it encourages honesty, i.e. if the
loss is minimized for Q = P , i.e. if

S(P ,P) = inf
Q

S(P ,Q).

It is strictly proper if the minimum is unique.
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The logarithmic score is strictly proper. Other examples of
strictly proper scoring rules include for X being finite the
Brier score

S(x ,Q) = ||q||22 − 2q(x),

where q is the pmf of Q and ||q||22 =
�

x q(x)
2, and the

spherical score

S(x ,Q) = −q(x)/||q||2.

Also, for X = R, the Bregman scores are strictly proper

S(x ,Q) = φ�{q(x)}+
� �

φ{q(y)}− q(y)φ�{q(y)}
�
µ(dy),

where φ is any strictly concave real function.
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Every strictly proper scoring rule induces an entropy function

H(P ,P) = S(P ,P)

and a non-negative divergence (Dawid, 1998; Grünwald and
Dawid, 2004)

D(P ,Q) = S(P ,Q)− S(P ,P) = S(P ,Q)− H(P) ≥ 0.

For the logarithmic score we get the Shannon entropy

H(P) = EX∼P{− log p(X )}

and the Kullback–Leibler divergence

D(P ,Q)) = EX∼P{− log q(X )+log p(X )} = EX∼P{log p(X )/q(X )}.
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Suppose X ⊆ Rp and the density q = dQ/dx of Q satisfies:

EX∼P�∇ log g(X )�2p < ∞ for all P ,Q ∈ P;

as well as g(x) → 0 and �∇g(x)�p → 0 as x approaches the
boundary of X .

Then Hyvärinen (2005) showed that the divergence function

D2(P ,Q) = EX∼P �∇ log g(x)−∇ log f (x)�2p

where f is the density of P , is induced by the scoring rule

S2(x ,Q) =
1

2
�∇ log q(x)�2p +∆ log q(x).

which is strictly proper (Dawid and Lauritzen, 2005).
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Let P = {Qθ, θ ∈ Θ} and X 1 = x1, . . . ,X = xn be a sample
in X with empirical distribution P̂ .

The score estimator of θ is determined as the minimizer

θ̌ = argmin
θ∈Θ

n�

i=1

S(x i ,Qθ) = argmin
θ∈Θ

EX∼P̂{S(X ,Q)}.

Dawid and Lauritzen (2005) show that this minimization
yields an unbiased estimating equation

n�

i=1

S �(x i , θ) = 0,

where S �(x , θ) is the vector of derivatives of S(x ,Qθ) w.r.t.
θ. Solutions are M-estimators (Huber, 1964, 1967) and
typically consistent although not efficient.

Steffen Lauritzen — Gaussian Graphical Models with Symmetry — Swiss Winterschool 2015, Lecture 3
Slide 39/52

un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

If S(x ,Q) = − log q(x) is the logarithmic score, the equation
is the likelihood equation and the score estimator is the
maximum likelihood estimator.

The score matching estimator (Hyvärinen, 2005) is the
estimator corresponding to the scoring rule

S2(x ,Q) =
1

2
�∇ log q(x)�2p +∆ log q(x).

Note that S2(x ,Q) can be calculated if we only know q up to
an unknown proportionality factor.

Hence, if q(x | θ) = c(θ)h(x), we do not need a simple
expression for the constant c(θ).
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For a Gaussian distribution we have

log q(y) = c − y�Ky/2

and hence

∇ log q(y) = −Ky

∆ log q(y) = − tr(K )

n�

i=1

S2(yi ,Q) = trK 2W /2− n tr(K ).
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For a Gaussian linear concentration model with L being a
d-dimensional subspace of Sp the symmetric p × p matrices
and Ip ∈ L, we then get the estimating equation

ΠL(K ◦W ) = nIp

where A ◦ B = (AB� + BA�)/2 is the Jordan product
(Albert, 1946) of the symmetric matrices A and B .

Note that this equation is linear in K and thus it has a unique
solution if and only if the map K → K ◦W has trivial kernel.

Even when there is a unique solution Ǩ , Ǩ may not be
positive semidefinite.
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Some questions

1 For which L is the map QW : K → ΠL{(KW +WK )/2}
invertible with probability one?

2 If QW is invertible, when is Q−1
W positive definite with

probability one?

3 If QW is invertible, when is Ǩ = Q−1
W (nIp) positive

definite with high probability?
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For a basis T u, u = 1, . . . d for L we have the MLE equations

tr(T uW ) = n tr(T uK−1), u = 1, . . . , d

whereas the SME equations are

tr(T uWK ) = n tr(T u), u = 1, . . . , d .

If the SME exists, then the MLE also exists, i.e. if
K → K ◦W has trivial kernel the MLE exists, but not
conversely (Forbes and Lauritzen, 2014).
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Suppose that L is closed under the Jordan product or,
equivalently, Θ = L ∩ Sp

+ is closed under inversion (Jensen,
1988). Includes all models determined by group invariance
(Andersson, 1975).

For such models the MLE and the SME coincide (Forbes and
Lauritzen, 2014). More precisely:

If the subspace L is a Jordan subalgebra, the score matching
estimator is equal to the maximum likelihood estimator and

K̂ = Ǩ = {ΠL(W )}−1,

provided ΠL(W ) is invertible.
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In particular this implies that the map ΠL : Sp → L is Löwner
positive, i.e. maps non-negative definite elements into
non-negative definite elements.

Indeed it holds for any idempotent linear map
Π : Sp → L = range(Π) that

Π is Löwner positive if and only if L is a Jordan subalgebra of
Sp.

(Effros and Størmer, 1979; Fuglede and Jensen, 2013).
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Observing y = (y1, . . . , yn), the score matching equation has
a unique solution iff the quadratic form

D2(K ) =
n�

i=1

�Ky i�2

is positive definite on L. If T 1, . . . ,T d is an orthogonal basis
for L, the matrix for this quadratic form is M(y) = {muv (y)}
where

muv (y) = tr(T uWT v )

and hence D2 is positive definite if and only if detM(y) > 0.

Steffen Lauritzen — Gaussian Graphical Models with Symmetry — Swiss Winterschool 2015, Lecture 3
Slide 47/52

un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

This determinant is a polynomial in y ; hence either
detM(y) = 0 for all y or detM(y) > 0 almost everywhere
(Okamoto, 1973).

Note that W has rank n with probability one in

muv (y) = tr(T uWT v )

Say L is n-estimable if there is a y = (y1, . . . , yn) ∈ Rp×n

such that detM(y) > 0.

For n ≥ p, W is positive definite with probability one and
hence M(y) is positive definite and any L is n-estimable.

Assume n < p. Let ∆k = k(k + 1)/2 be the triangular
numbers.

Then, if d = dim L > ∆p −∆p−n, L is not n-estimable
(Forbes and Lauritzen, 2014).
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The converse is false:

L =










a c 0 f

c b −f 0

0 −f a c

f 0 c b




: a, b, c , f ∈ R






,

is not 1-estimable although we have p = 4 and d = 4 and
thus

∆p −∆p−n = ∆4 −∆3 = 4 = d .

This is an example of a Jordan subalgebra (Jensen, 1988) and
— as Jensen — we conclude that also the MLE fails to exist.
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Modify to get coloured graphical model

L =










a c 0 f

c b f 0

0 f a c

f 0 c b




: a, b, c , f ∈ R






,

This is 1-estimable as detM(y) = 4y1y2y3y4.

�
� �

�Y4

Y1

Y3

Y2

This is not a Jordan subalgebra but we conclude that also
the MLE exists.
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Minimum score for the SME is very easy to calculate

n�

i=1

S2(yi ,QǨ ) = tr Ǩ 2W /2− n tr(Ǩ ) = −n tr(Ǩ )/2.

This makes sense even if Ǩ is not positive definite.
So identify concentration graph by minimizing a penalised
version of the optimal score:

S̃(G) = (|V |+ |E |)√p log log(np)/(2n)− tr(ǨG).

This is extremely fast. For example, using this on an s × s
lattice so p = s2 it took for s = 100, i.e. p = 10000 and
n = 100000 10 seconds to identify the lattice structure
correctly. Note the concentration matrix is then
10000× 10000, so is rather big...
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: p = 16, n = 1× p : p = 64, n = 1× p : p = 256, n = 1× p

: p = 16, n = 5× p : p = 64, n = 5× p : p = 256, n = 5× p

: p = 16, n = 10× p : p = 64, n = 10× p : p = 256, n = 10× p
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