Consider the case where $\xi=0$ and a sample $X^{1}=x^{1}, \ldots, X^{n}=x^{n}$ from a multivariate Gaussian distribution $\mathcal{N}_{d}(0, \Sigma)$ with Σ regular. Using the expression for the density, we get the likelihood function

$$
\begin{align*}
L(K) & =(2 \pi)^{-n d / 2}(\operatorname{det} K)^{n / 2} e^{-\sum_{\nu=1}^{n}\left(x^{\nu}\right)^{\top} K x^{\nu} / 2} \\
& \propto(\operatorname{det} K)^{n / 2} e^{-\sum_{\nu=1}^{n} \operatorname{tr}\left\{K x^{\nu}\left(x^{\nu}\right)^{\top}\right\} / 2} \\
& =(\operatorname{det} K)^{n / 2} e^{-\operatorname{tr}\left\{K \sum_{\nu=1}^{n} x^{\nu}\left(x^{\nu}\right)^{\top}\right\} / 2} \\
& =(\operatorname{det} K)^{n / 2} e^{-\operatorname{tr}(K w) / 2} . \tag{1}
\end{align*}
$$

where

$$
W=\sum_{\nu=1}^{n} X^{\nu}\left(X^{\nu}\right)^{\top}
$$

is the matrix of sums of squares and products.

Steffen Lauritzen - Likelihood Analysis of Gaussian Graphical Models — Swiss Winterschool 2015, Lecture 2 Slide $2 / 28$

Rewriting the likelihood function as

$$
\log L(K)=\frac{n}{2} \log (\operatorname{det} K)-\operatorname{tr}(K w) / 2
$$

we can of course also differentiate to find the maximum, leading to the equation

$$
\frac{\partial}{\partial k_{i j}} \log (\operatorname{det} K)=w_{i j} / n
$$

which in combination with the previous result yields

$$
\frac{\partial}{\partial K} \log (\operatorname{det} K)=K^{-1}
$$

The latter can also be derived directly by writing out the determinant, and it holds for any non-singular square matrix, i.e. one which is not necessarily positive definite.

The likelihood function based on a sample of size n is

$$
L(K) \propto(\operatorname{det} K)^{n / 2} e^{-\operatorname{tr}(K w) / 2}
$$

where w is the（Wishart）matrix of sums of squares and products and $\Sigma^{-1}=K \in \mathcal{S}^{+}(\mathcal{G})$ ．
Define the matrices $T^{u}, u \in V \cup E$ as those with elements

$$
T_{i j}^{u}= \begin{cases}1 & \text { if } u \in V \text { and } i=j=u \\ 1 & \text { if } u \in E \text { and } u=\{i, j\} \\ 0 & \text { otherwise }\end{cases}
$$

then $T^{u}, u \in V \cup E$ forms a basis for the linear space $\mathcal{S}(\mathcal{G})$ of symmetric matrices over V which have zero entries ij whenever i and j are non－adjacent in \mathcal{G} ．

Steffen Lauritzen — Likelihood Analysis of Gaussian Graphical Models－Swiss Winterschool 2015，Lecture 2 Slide 5／28

Hence we can identify the family as a（regular and canonical） exponential family with $-\operatorname{tr}\left(T^{u} W\right) / 2, u \in V \cup E$ as canonical sufficient statistics．

The likelihood equations can be obtained from this fact or by differentiation，combining the fact that

$$
\frac{\partial}{\partial k_{u}} \log \operatorname{det}(K)=\operatorname{tr}\left(T^{u} \Sigma\right)
$$

with（2）．This eventually yields the likelihood equations

$$
\operatorname{tr}\left(T^{u} w\right)=n \operatorname{tr}\left(T^{u} \Sigma\right), \quad u \in V \cup E
$$

Further，as $K \in \mathcal{S}(\mathcal{G})$ ，we have

$$
\begin{equation*}
K=\sum_{v \in V} k_{v} T^{v}+\sum_{e \in E} k_{e} T^{e} \tag{2}
\end{equation*}
$$

and hence

$$
\operatorname{tr}(K w)=\sum_{v \in V} k_{v} \operatorname{tr}\left(T^{v} w\right)+\sum_{e \in E} k_{e} \operatorname{tr}\left(T^{e} w\right)
$$

leading to the log－likelihood function

$$
\begin{aligned}
I(K)= & \log L(K) \sim \frac{n}{2} \log (\operatorname{det} K)-\operatorname{tr}(K w) / 2 \\
= & \frac{n}{2} \log (\operatorname{det} K) \\
& -\sum_{v \in V} k_{v} \operatorname{tr}\left(T^{\vee} w\right) / 2+\sum_{e \in E} k_{e} \operatorname{tr}\left(T^{e} w\right) / 2
\end{aligned}
$$

Steffen Lauritzen — Likelihood Analysis of Gaussian Graphical Models — Swiss Winterschool 2015，Lecture 2 Slide $6 / 28$

The likelihood equations

$$
\operatorname{tr}\left(T^{u} w\right)=n \operatorname{tr}\left(T^{u} \Sigma\right), \quad u \in V \cup E
$$

can also be expressed as

$$
n \hat{\sigma}_{v v}=w_{v v}, \quad n \hat{\sigma}_{\alpha \beta}=w_{\alpha \beta}, \quad v \in V,\{\alpha, \beta\} \in E
$$

We should remember the model restriction
$K=\Sigma^{-1} \in \mathcal{S}^{+}(\mathcal{G})$ ．
This＇fits variances and covariances along nodes and edges in \mathcal{G}^{\prime} so we can write the equations as

$$
n \hat{\Sigma}_{c c}=w_{c c} \text { for all cliques } c \in \mathcal{C}(\mathcal{G})
$$

General theory of exponential families ensure the solution to be unique，provided it exists．

For $K \in \mathcal{S}^{+}(\mathcal{G})$ and $c \in \mathcal{C}$, define the operation of adjusting the c-marginal as follows: Let $a=V \backslash c$ and

$$
M_{c} K=\left(\begin{array}{cc}
n\left(w_{c c}\right)^{-1}+K_{c a}\left(K_{a a}\right)^{-1} K_{a c} & K_{c a} \tag{3}\\
K_{a c} & K_{a a}
\end{array}\right) .
$$

This operation is clearly well defined if $w_{c c}$ is positive definite Recall the identity

$$
\left(K_{A A}\right)^{-1}=\Sigma_{A A}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A}
$$

Switching the role of K and Σ yields

$$
\Sigma_{A A}=\left(K^{-1}\right)_{A A}=\left(K_{A A}-K_{A B} K_{B B}^{-1} K_{B A}\right)^{-1}
$$

and hence

$$
\Sigma_{c c}=\left(K^{-1}\right)_{c c}=\left\{K_{c c}-K_{c a}\left(K_{a a}\right)^{-1} K_{a c}\right\}^{-1}
$$

Steffen Lauritzen - Likelihood Analysis of Gaussian Graphical Models - Swiss Winterschool 2015, Lecture 2
Slide 9/28

Next we choose any ordering $\left(c_{1}, \ldots, c_{k}\right)$ of the cliques in \mathcal{G}
Choose further $K_{0}=I$ and define for $r=0,1, \ldots$

$$
K_{r+1}=\left(M_{c_{1}} \cdots M_{c_{k}}\right) K_{r} .
$$

Then we have: Consider a sample from a covariance selection model with graph \mathcal{G}. Then

$$
\hat{K}=\lim _{r \rightarrow \infty} K_{r},
$$

provided the maximum likelihood estimate \hat{K} of K exists.

This algorithm is also known as Iterative Proportional Scaling or Iterative Marginal Fitting.

Thus the C-marginal covariance $\tilde{\Sigma}_{c c}$ corresponding to the adjusted concentration matrix becomes

$$
\begin{aligned}
\tilde{\Sigma}_{c c} & =\left\{\left(M_{c} K\right)^{-1}\right\}_{c c} \\
& =\left\{n\left(w_{c c}\right)^{-1}+K_{c a}\left(K_{a a}\right)^{-1} K_{a c}-K_{c a}\left(K_{a a}\right)^{-1} K_{a c}\right\}^{-1} \\
& =w_{c c} / n,
\end{aligned}
$$

hence $M_{c} K$ does indeed adjust the marginals. From (3) it is seen that the pattern of zeros in K is preserved under the operation M_{c}, and it can also be seen to stay positive definite.
In fact, M_{c} scales proportionally in the sense that

$$
f\left\{x \mid\left(M_{c} K\right)^{-1}\right\}=f\left(x \mid K^{-1}\right) \frac{f\left(x_{c} \mid w_{c c} / n\right)}{f\left(x_{c} \mid \Sigma_{c c}\right)} .
$$

Steffen Lauritzen - Likelihood Analysis of Gaussian Graphical Models - Swiss Winterschool 2015, Lecture 2 Slide $10 / 28$

Consider an undirected graph $\mathcal{G}=(V, E)$. A partitioning of V into a triple (A, B, S) of subsets of V forms a decomposition of \mathcal{G} if

$$
A \perp_{g} B \mid S \text { and } S \text { is complete. }
$$

The decomposition is proper if $A \neq \emptyset$ and $B \neq \emptyset$.
The components of \mathcal{G} are the induced subgraphs $\mathcal{G}_{A \cup S}$ and $\mathcal{G}_{B \cup S}$.
A graph is prime if no proper decomposition exists.

Example

The graph to the left is prime

Decomposition with $A=\{1,3\}, B=\{4,6,7\}$ and $S=\{2,5\}$

Steffen Lauritzen - Likelihood Analysis of Gaussian Graphical Models - Swiss Winterschool 2015, Lecture 2 Slide 13/28

Factorization of Markov distributions

Suppose P satisfies (F) w.r.t. \mathcal{G} and (A, B, S) is a
decomposition. Then
(i) $P_{A \cup S}$ and $P_{B \cup S}$ satisfy (F) w.r.t. $\mathcal{G}_{A \cup S}$ and $\mathcal{G}_{B \cup S}$ respectively;
(ii) $f(x) f_{S}\left(x_{S}\right)=f_{A \cup S}\left(x_{A \cup S}\right) f_{B \cup S}\left(x_{B \cup S}\right)$.

The converse also holds in the sense that if (i) and (ii) hold, and (A, B, S) is a decomposition of \mathcal{G}, then P factorizes w.r.t. \mathcal{G}.

Decomposability

Any graph can be recursively decomposed into its maximal prime subgraphs:

A graph is decomposable (or rather fully decomposable) if it is complete or admits a proper decomposition into decomposable subgraphs.
Definition is recursive. Alternatively this means that all maximal prime subgraphs are cliques.

Recursive decomposition of a decomposable graph into cliques yields the formula:

$$
f(x) \prod_{S \in \mathcal{S}} f_{S}\left(x_{S}\right)^{\nu(S)}=\prod_{C \in \mathcal{C}} f_{C}\left(x_{C}\right) .
$$

Here \mathcal{S} is the set of minimal complete separators occurring in the decomposition process and $\nu(S)$ the number of times such a separator appears in this process.

Characterizing decomposable graphs

A graph is chordal if all cycles of length ≥ 4 have chords.
The following are equivalent for any undirected graph \mathcal{G}.
(i) \mathcal{G} is chordal;
(ii) \mathcal{G} is decomposable;
(iii) All maximal prime subgraphs of \mathcal{G} are cliques;

There are also many other useful characterizations of chordal graphs and algorithms that identify them.

Trees are chordal graphs and thus decomposable.

Relations for trace and determinant

Using the factorization (4) we can for example match the expressions for the trace and determinant of Σ

$$
\operatorname{tr}(K W)=\sum_{C \in \mathcal{C}} \operatorname{tr}\left(K_{C} W_{C}\right)-\sum_{S \in \mathcal{S}} \nu(S) \operatorname{tr}\left(K_{S} W_{S}\right)
$$

and further

$$
\operatorname{det} \Sigma=\{\operatorname{det}(K)\}^{-1}=\frac{\prod_{C \in \mathcal{C}} \operatorname{det}\left\{\Sigma_{C}\right\}}{\prod_{S \in \mathcal{S}}\left\{\operatorname{det}\left(\Sigma_{S}\right)\right\}^{\nu(S)}}
$$

These are some of many relations that can be derived using the decomposition property of chordal graphs.

If the graph \mathcal{G} is chordal, we say that the graphical model is decomposable.
In this case, the IPS-algorithm converges in a finite number of steps.
We also have the factorization of densities

$$
\begin{equation*}
f(x \mid \Sigma)=\frac{\prod_{C \in \mathcal{C}} f\left(x_{C} \mid \Sigma_{C}\right)}{\prod_{S \in \mathcal{S}} f\left(x_{S} \mid \Sigma_{S}\right)^{\nu(S)}} \tag{4}
\end{equation*}
$$

where $\nu(S)$ is the number of times S appear as intersection between neighbouring cliques of a junction tree for \mathcal{C}.

Steffen Lauritzen - Likelihood Analysis of Gaussian Graphical Models - Swiss Winterschool 2015, Lecture 2 Slide 18/28

The same factorization clearly holds for the maximum likelihood estimates:

$$
\begin{equation*}
f(x \mid \hat{\Sigma})=\frac{\prod_{C \in \mathcal{C}} f\left(x_{C} \mid \hat{\Sigma}_{C}\right)}{\prod_{S \in \mathcal{S}} f\left(x_{S} \mid \hat{\Sigma}_{S}\right)^{\nu(S)}} \tag{5}
\end{equation*}
$$

Moreover, it follows from the general likelihood equations that

$$
\hat{\Sigma}_{A}=W_{A} / n \text { whenever } A \text { is complete. }
$$

Exploiting this, we can obtain an explicit formula for the maximum likelihood estimate in the case of a chordal graph.

Luritzen - Likelihood Analysis of Gaussian Graphical Models — Swiss Winterschool 2015, Lecture 2

For a $|d| \times|e|$ matrix $A=\left\{a_{\gamma \mu}\right\}_{\gamma \in d, \mu \in e}$ we let $[A]^{V}$ denote the matrix obtained from A by filling up with zero entries to obtain full dimension $|V| \times|V|$, i.e.

$$
\left([A]^{V}\right)_{\gamma \mu}= \begin{cases}a_{\gamma \mu} & \text { if } \gamma \in d, \mu \in e \\ 0 & \text { otherwise. }\end{cases}
$$

The maximum likelihood estimates exists if and only if $n \geq C$ for all $C \in \mathcal{C}$. Then the following simple formula holds for the maximum likelihood estimate of K :

$$
\hat{K}=n\left\{\sum_{C \in \mathcal{C}}\left[\left(w_{C}\right)^{-1}\right]^{v}-\sum_{S \in \mathcal{S}} \nu(S)\left[\left(w_{S}\right)^{-1}\right]^{v}\right\} .
$$

Steffen Lauritzen - Likelihood Analysis of Gaussian Graphical Models - Swiss Winterschool 2015, Lecture 2
Slide 21/28

Since one degree of freedom is lost by subtracting the average, we get in this example

$$
\hat{K}=87\left(\begin{array}{ccccc}
w_{[123]}^{11} & w_{[123]}^{12} & w_{[123]}^{13} & 0 & 0 \\
w_{[123]}^{2123]} & w_{[123]}^{2123} & w_{[123]}^{32} & 0 & 0 \\
w_{[123]}^{123} & w_{[123]}^{22} & w_{[123]}^{33}+w_{[345]}^{33}-1 / w_{33} & w_{[345]}^{33} & w_{[345]}^{35} \\
0 & 0 & w_{[34]}^{43} & w_{[345]}^{44} & w_{[345]}^{45} \\
0 & 0 & w_{[345]}^{53} & w_{[345]}^{54} & w_{[345]}^{55}
\end{array}\right)
$$

where $w_{[123]}^{i j}$ is the $i j$ th element of the inverse of

$$
W_{[123]}=\left(\begin{array}{lll}
w_{11} & w_{12} & w_{13} \\
w_{21} & w_{22} & w_{23} \\
w_{31} & w_{32} & w_{33}
\end{array}\right)
$$

and so on.

Mathematics marks

This graph is chordal with cliques $\{1,2,3\},\{3,4,5\}$ with separator $S=\{3\}$ having $\nu(\{3\})=1$.

Steffen Lauritzen — Likelihood Analysis of Gaussian Graphical Models — Swiss Winterschool 2015, Lecture 2 Slide $22 / 28$

UNIVERSITY OF COPENHAGEN

Existence of the MLE

The IPS algorithm converges to the maximum likelihood estimator of \hat{K} of K provided that the likelihood function does attain its maximum.
The question of existence is non-trivial.
A chordal cover of \mathcal{G} is a chordal graph (no cycles without chords) \mathcal{G}^{\prime} of which \mathcal{G} is a subgraph.
Let $n^{\prime}=\max _{C \in \mathcal{C}^{\prime}}|C|$, where \mathcal{C}^{\prime} is the set of cliques in \mathcal{G}^{\prime} and let n^{+}denote smallest possible value of n^{\prime}.

The quantity $\tau(\mathcal{G})=n^{+}-1$ is known as the treewidth of \mathcal{G} (Halin, 1976; Robertson and Seymour, 1984).

The condition $n>\tau(\mathcal{G})$ is sufficient for the existence of the MLE.

This graph has treewidth $\tau(\mathcal{G})=2$ since it is itself chordal and the largest clique has size 3 .
Hence $n=3$ observations is sufficient for the existence of the MLE.

Steffen Lauritzen - Likelihood Analysis of Gaussian Graphical Models - Swiss Winterschool 2015, Lecture 2 Slide 25/28

Determining the treewidth $\tau(\mathcal{G})$ is a difficult combinatorial problem (Robertson and Seymour, 1986), but for any n it can be decided with complexity $O(|V|)$ whether $\tau(\mathcal{G})<n$ (Bodlaender, 1997).

If we let n^{-}denote the maximal clique size of \mathcal{G}, a necessary condition is that $n \geq n^{-}$.
For $n^{-} \leq n \leq \tau(\mathcal{G})$ it is unclear.

This graph has also treewidth $\tau(\mathcal{G})=2$ since a chordal cover can be obtained by adding a diagonal edge.
Hence also here $n=3$ observations is sufficient for the existence of the MLE.

Steffen Lauritzen - Likelihood Analysis of Gaussian Graphical Models - Swiss Winterschool 2015, Lecture 2 Slide 26/28

Buhl (1993) shows for a p-cycle, we have $n^{-}=2$ and $\tau(\mathcal{G})=2$. If now $n=2$, the probability that the MLE exists is strictly between 0 and 1 . In fact,

$$
P\{\text { MLE exists } \mid K=I\}=1-\frac{2}{(p-1)!}
$$

Similar results hold for the bipartite graphs $K_{2, m}$ (Uhler, 2012) and other special cases, but general case is unclear.

Recently there has been considerable progress (Gross and Sullivant, 2014), for example it can be shown that $n=4$ observations suffice for any planar graph, an interesting parallel to the four-colour theorem.

Barndorff-Nielsen, O. E. (1978). Information and Exponential Families in Statistical Theory. John Wiley and Sons, New York.
Bodlaender, H. L. (1997). Treewidth: Algorithmic techniques and results. In Prívara, I. and Ručička, P., editors,
Mathematical Foundations of Computer Science 1997,
volume 1295 of Lecture Notes in Computer Science, pages 19-36. Springer Berlin Heidelberg.
Buhl, S. L. (1993). On the existence of maximum likelihood estimators for graphical Gaussian models. Scandinavian Journal of Statistics, 20:263-270.

Gross, E. and Sullivant, S. (2014). The maximum likelihood threshold of a graph. ArXiv:1404.6989.
Halin, R. (1976). S-functions for graphs. Journal of Geometry, 8:171-186.
Robertson, N. and Seymour, P. D. (1984). Graph minors III.
Steffen Lauritzen - Likelihood Analysis of Gaussian Graphical Models - Swiss Winterschool 2015, Lecture 2
Slide 28/28

Planar tree-width. Journal of Combinatorial Theory,

Series B, 36:49-64.

Robertson, N. and Seymour, P. D. (1986). Graph minors II. Algorithmic aspects of tree-width. Journal of Algorithms, 7:309-322.
Uhler, C. (2012). Geometry of maximum likelihood estimation in Gaussian graphical models. Annals of Statistics, 40:238-261. Slide 28/28

