Overview of lectures

Markov Properties and the Multivariate Gaussian

Distribution

Steffen Lauritzen
Department of Mathematical Sciences

Swiss Winterschool 2015 - Lecture 1
Slide $1 / 37$

Lecture 1 Markov Properties and the Multivariate Gaussian Distribution
 Lecture 2 Likelihood Analysis of Gaussian Graphical Models
 Lecture 3 Gaussian Graphical Models with Symmetry

For reference, if nothing else is mentioned, see Lauritzen (1996), Chapters 3 and 4

Formal definition

Random variables X and Y are conditionally independent given the random variable Z if

$$
\mathcal{L}(X \mid Y, Z)=\mathcal{L}(X \mid Z) .
$$

We then write $X \Perp Y \mid Z\left(\right.$ or $X \Perp_{P} Y \mid Z$)
Intuitively: Knowing Z renders Y irrelevant for predicting X.
Factorisation of densities:

$$
\begin{aligned}
X \Perp Y \mid Z & \Longleftrightarrow f_{X Y Z}(x, y, z) f_{Z}(z)=f_{X Z}(x, z) f_{Y Z}(y, z) \\
& \Longleftrightarrow \exists a, b: f(x, y, z)=a(x, z) b(y, z) .
\end{aligned}
$$

When X and Y are independent we write $X \Perp Y$.

For several variables, complex systems of conditional independence can for example be described by undirected graphs.
Then a set of variables A is conditionally independent of a set B, given the values of a set of variables C, if C separates A from B.
For example in picture above

$$
1 \Perp\{4,7\}|\{2,3\}, \quad\{1,2\} \Perp 7|\{4,5,6\} .
$$

Steffen La
Slide $5 / 37$

Conditional independence can be seen as encoding abstract irrelevance: Knowing C, A is irrelevant for learning B, (C1)-(C4) translate into:
(I1) If, knowing C, learning A is irrelevant for learning B, then B is irrelevant for learning A;
(I2) If, knowing C, learning A is irrelevant for learning B, then A is irrelevant for learning any part D of B;
(I3) If, knowing C, learning A is irrelevant for learning B, it remains irrelevant having learnt any part D of B;
(I4) If, knowing C, learning A is irrelevant for learning B and, having also learnt A, D remains irrelevant for learning B, then both of A and D are irrelevant for learning B.
The property analogous to (C5) is slightly more subtle and not generally obvious.
Steffen Lauritzen - Markov Properties and the Multivariate Gaussian Distribution - Swiss Winterschool 2015 - Lecture 1 Slide $7 / 37$

For random variables X, Y, Z, and W it holds
(C1) If $X \Perp Y \mid Z$ then $Y \Perp X \mid Z$;
(C2) If $X \Perp Y \mid Z$ and $U=g(Y)$, then $X \Perp U \mid Z$;
(C3) If $X \Perp Y \mid Z$ and $U=g(Y)$, then $X \Perp Y \mid(Z, U)$;
(C4) If $X \Perp Y \mid Z$ and $X \Perp W \mid(Y, Z)$, then $X \Perp(Y, W) \mid Z$;
If density w.r.t. product measure $f(x, y, z, w)>0$ also
(C5) If $X \Perp Y \mid(Z, W)$ and $X \Perp Z \mid(Y, W)$ then $X \Perp(Y, Z) \mid W$.

Steffen Lauritzen — Markov Properties and the Multivariate Gaussian Distribution — Swiss Winterschool 2015 - Lecture 1 Slide $6 / 37$

An independence model (Studený, 2005) \perp_{σ} is a ternary relation over subsets of a finite set V. It is graphoid if for all subsets A, B, C, D :
(S1) if $A \perp_{\sigma} B \mid C$ then $B \perp_{\sigma} A \mid C$ (symmetry);
(S2) if $A \perp_{\sigma}(B \cup D) \mid C$ then $A \perp_{\sigma} B \mid C$ and $A \perp_{\sigma} D \mid C$ (decomposition);
(S3) if $A \perp_{\sigma}(B \cup D) \mid C$ then $A \perp_{\sigma} B \mid(C \cup D)$ (weak union);
(S4) if $A \perp_{\sigma} B \mid C$ and $A \perp_{\sigma} D \mid(B \cup C)$, then $A \perp_{\sigma}(B \cup D) \mid C$ (contraction);
(S5) if $A \perp_{\sigma} B \mid(C \cup D)$ and $A \perp_{\sigma} C \mid(B \cup D)$ then $A \perp_{\sigma}(B \cup C) \mid D$ (intersection).
Semigraphoid if only (S1)-(S4). It is compositional if
(S6) if $A \perp_{\sigma} B \mid C$ and $A \perp_{\sigma} D \mid C$ then $A \perp_{\sigma}(B \cup D) \mid C$ (composition).

Lauritzen - Markov Properties and the Multivariate Gaussian Distribution - Swiss Winterschool 2015 - Lecture 1 Slide $8 / 37$

Separation in undirected graphs

Let $\mathcal{G}=(V, E)$ be finite and simple undirected graph (no self-loops, no multiple edges).
For subsets A, B, S of V, let $A \perp_{g} B \mid S$ denote that S separates A from B in \mathcal{G}, i.e. that all paths from A to B intersect S.
Fact: The relation \perp_{g} on subsets of V is a compositional graphoid.
This fact is the reason for choosing the name 'graphoid' for such independence model.

Slide $9 / 3$

Geometric orthogonality

Let L, M, and N be linear subspaces of a Hilbert space H and

$$
L \perp M \mid N \Longleftrightarrow(L \ominus N) \perp(M \ominus N),
$$

where $L \ominus N=L \cap N^{\perp} . L$ and M are said to meet orthogonally in N.
(O1) If $L \perp M \mid N$ then $M \perp L \mid N$;
(O2) If $L \perp M \mid N$ and U is a linear subspace of L, then $U \perp M \mid N$;
(O3) If $L \perp M \mid N$ and U is a linear subspace of M, then $L \perp M \mid(N+U)$;
(O4) If $L \perp M \mid N$ and $L \perp R \mid(M+N)$, then $L \perp(M+R) \mid N$.
Intersection does not hold in general whereas composition (S6) does.

Probabilistic Independence Model

For a system V of labeled random variables $X_{v}, v \in V$, we use the shorthand

$$
A \Perp B\left|C \Longleftrightarrow X_{A} \Perp X_{B}\right| X_{C}
$$

where $X_{A}=\left(X_{v}, v \in A\right)$ denotes the variables with labels in A.

The properties (C1)-(C4) imply that \Perp satisfies the semi-graphoid axioms for such a system, and the graphoid axioms if the joint density of the variables is strictly positive.
A regular multivariate Gaussian distribution defines a compositional graphoid independence model, as we shall see later.

Steffen Lauritzen - Markov Properties and the Multivariate Gaussian Distribution - Swiss Winterschool 2015 - Lecture 1 Slide 10/37

UNIVERSITY OF COPENHAGEA
$\mathcal{G}=(V, E)$ simple undirected graph; An independence model \perp_{σ} satisfies
(P) the pairwise Markov property if

$$
\alpha \nsim \beta \Rightarrow \alpha \perp_{\sigma} \beta \mid V \backslash\{\alpha, \beta\} ;
$$

(L) the local Markov property if

$$
\forall \alpha \in V: \alpha \perp_{\sigma} V \backslash \mathrm{cl}(\alpha) \mid \operatorname{bd}(\alpha)
$$

(G) the global Markov property if

$$
A \perp_{g} B\left|S \Rightarrow A \perp_{\sigma} B\right| S
$$

Pairwise Markov property

Any non-adjacent pair of random variables are conditionally independent given the remaning.

For example, $1 \perp_{\sigma} 5 \mid\{2,3,4,6,7\}$ and $4 \perp_{\sigma} 6 \mid\{1,2,3,5,7\}$.

Slide $13 / 37$

Global Markov property

To find conditional independence relations, one should look for separating sets, such as $\{2,3\}$, $\{4,5,6\}$, or $\{2,5,6\}$

For example, it follows that $1 \perp_{\sigma} 7 \mid\{2,5,6\}$ and $2 \perp_{\sigma} 6 \mid\{3,4,5\}$.

Local Markov property

Every variable is conditionally independent of the remaining, given its neighbours.

For example, $5 \perp_{\sigma}\{1,4\} \mid\{2,3,6,7\}$ and $7 \perp_{\sigma}\{1,2,3\} \mid\{4,5,6\}$.

Steffen Laur
Slide $14 / 37$
UNIVERSITY OF COPENHAGEA

For any semigraphoid it holds that

$$
(\mathrm{G}) \Rightarrow(\mathrm{L}) \Rightarrow(\mathrm{P})
$$

If \perp_{σ} satisfies graphoid axioms it further holds that

$$
(\mathrm{P}) \Rightarrow(\mathrm{G})
$$

so that in the graphoid case

$$
(\mathrm{G}) \Longleftrightarrow(\mathrm{L}) \Longleftrightarrow(\mathrm{P}) .
$$

The latter holds in particular for \Perp, when $f(x)>0$.

A d-dimensional random vector $X=\left(X_{1}, \ldots, X_{d}\right)$ has a multivariate Gaussian distribution or normal distribution on \mathcal{R}^{d} if there is a vector $\xi \in \mathcal{R}^{d}$ and a $d \times d$ matrix Σ such that

$$
\begin{equation*}
\lambda^{\top} X \sim \mathcal{N}\left(\lambda^{\top} \xi, \lambda^{\top} \Sigma \lambda\right) \quad \text { for all } \lambda \in R^{d} \tag{1}
\end{equation*}
$$

We then write $X \sim \mathcal{N}_{d}(\xi, \Sigma)$.
Taking $\lambda=e_{i}$ or $\lambda=e_{i}+e_{j}$ where e_{i} is the unit vector with i-th coordinate 1 and the remaining equal to zero yields:

$$
X_{i} \sim \mathcal{N}\left(\xi_{i}, \sigma_{i i}\right), \quad \operatorname{Cov}\left(X_{i}, X_{j}\right)=\sigma_{i j}
$$

Hence ξ is the mean vector and Σ the covariance matrix of the distribution.

Steffen Lauritzen - Markov Properties and the Multivariate Gaussian Distribution - Swiss Winterschool 2015 - Lecture Steffen Lauriter
Slide $17 / 37$

Assume $X^{\top}=\left(X_{1}, X_{2}, X_{3}\right)$ with X_{i} independent and $X_{i} \sim \mathcal{N}\left(\xi_{i}, \sigma_{i}^{2}\right)$. Then

$$
\lambda^{\top} X=\lambda_{1} X_{1}+\lambda_{2} X_{2}+\lambda_{3} X_{3} \sim \mathcal{N}\left(\mu, \tau^{2}\right)
$$

with
$\mu=\lambda^{\top} \xi=\lambda_{1} \xi_{1}+\lambda_{2} \xi_{2}+\lambda_{3} \xi_{3}, \quad \tau^{2}=\lambda_{1}^{2} \sigma_{1}^{2}+\lambda_{2}^{2} \sigma_{2}^{2}+\lambda_{3}^{2} \sigma_{3}^{2}$.
Hence $X \sim \mathcal{N}_{3}(\xi, \Sigma)$ with $\xi^{\top}=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ and

$$
\Sigma=\left(\begin{array}{ccc}
\sigma_{1}^{2} & 0 & 0 \\
0 & \sigma_{2}^{2} & 0 \\
0 & 0 & \sigma_{3}^{2}
\end{array}\right) .
$$

The definition (1) makes sense if and only if $\lambda^{\top} \Sigma \lambda \geq 0$, i.e. if Σ is positive semidefinite. Note that we have allowed distributions with variance zero.
The multivariate moment generating function of X can be calculated using the relation (1) as

$$
m_{d}(\lambda)=E\left\{e^{\lambda^{\top} x}\right\}=e^{\lambda^{\top} \xi+\lambda^{\top} \Sigma \lambda / 2}
$$

where we have used that the univariate moment generating function for $\mathcal{N}\left(\mu, \sigma^{2}\right)$ is

$$
m_{1}(t)=e^{t \mu+\sigma^{2} t^{2} / 2}
$$

and let $t=1, \mu=\lambda^{\top} \xi$, and $\sigma^{2}=\lambda^{\top} \Sigma \lambda$.
In particular this means that a multivariate Gaussian distribution is determined by its mean vector and covariance matrix.

Steffen Lauritzen - Markov Properties and the Multivariate Gaussian Distribution - Swiss Winterschool 2015 - Lecture 1 Slide $18 / 37$

If Σ is positive definite, i.e. if $\lambda^{\top} \Sigma \lambda>0$ for $\lambda \neq 0$, the distribution has density on \mathcal{R}^{d}

$$
\begin{equation*}
f(x \mid \xi, \Sigma)=(2 \pi)^{-d / 2}(\operatorname{det} K)^{1 / 2} e^{-(x-\xi)^{\top} K(x-\xi) / 2}, \tag{2}
\end{equation*}
$$

where $K=\Sigma^{-1}$ is the concentration matrix of the distribution. Since a positive semidefinite matrix is positive definite if and only if it is invertible, we then also say that Σ is regular.
If X_{1}, \ldots, X_{d} are independent and $X_{i} \sim \mathcal{N}\left(\xi_{i}, \sigma_{i}^{2}\right)$ their joint density has the form (2) with $\Sigma=\operatorname{diag}\left(\sigma_{i}^{2}\right)$ and $K=\Sigma^{-1}=\operatorname{diag}\left(1 / \sigma_{i}^{2}\right)$.
Hence vectors of independent Gaussians are multivariate Gaussian.

In the bivariate case it is traditional to write

$$
\Sigma=\left(\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{1} \sigma_{2} \rho \\
\sigma_{1} \sigma_{2} \rho & \sigma_{2}^{2}
\end{array}\right)
$$

with ρ being the correlation between X_{1} and X_{2}. Then

$$
\operatorname{det}(\Sigma)=\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)=\operatorname{det}(K)^{-1}
$$

and

$$
K=\frac{1}{\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)}\left(\begin{array}{cc}
\sigma_{2}^{2} & -\sigma_{1} \sigma_{2} \rho \\
-\sigma_{1} \sigma_{2} \rho & \sigma_{1}^{2}
\end{array}\right) .
$$

Steffen Lauritzen - Markov Properties and the Multivariate Gaussian Distribution — Swiss Winterschool 2015 - Lecture Slide $21 / 37$

The marginal distributions of a vector X can all be Gaussian without the joint being multivariate Gaussian:
For example, let $X_{1} \sim \mathcal{N}(0,1)$, and define X_{2} as

$$
X_{2}=\left\{\begin{array}{cc}
X_{1} & \text { if }\left|X_{1}\right|>c \\
-X_{1} & \text { otherwise } .
\end{array}\right.
$$

Then, using the symmetry of the univariate Gausssian distribution, X_{2} is also distributed as $\mathcal{N}(0,1)$.

Thus the density becomes

$$
\begin{aligned}
& f(x \mid \xi, \Sigma)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{\left(1-\rho^{2}\right)}} \\
& \quad \times e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left\{\frac{\left(x_{1}-\xi_{1}\right)^{2}}{\sigma_{1}^{2}}-2 \rho \frac{\left(x_{1}-\xi_{1}\right)\left(x_{2}-\xi_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(x_{2}-\xi_{2}\right)^{2}}{\sigma_{2}^{2}}\right\} .}
\end{aligned}
$$

The contours of this density are ellipses and the corresponding density is bell-shaped with maximum in $\left(\xi_{1}, \xi_{2}\right)$.

However, the joint distribution is not Gaussian unless $c=0$ since, for example, $Y=X_{1}+X_{2}$ satisfies
$P(Y=0)=P\left(X_{2}=-X_{1}\right)=P\left(\left|X_{1}\right| \leq c\right)=\Phi(c)-\Phi(-c)$.
Note that for $c=0$, the correlation ρ between X_{1} and X_{2} is 1 whereas for $c=\infty, \rho=-1$.
It follows that there is a value of c so that X_{1} and X_{2} are uncorrelated, and still not jointly Gaussian.

Adding two independent Gaussians yields a Gaussian:
If $X \sim \mathcal{N}_{d}\left(\xi_{1}, \Sigma_{1}\right)$ and $X_{2} \sim \mathcal{N}_{d}\left(\xi_{2}, \Sigma_{2}\right)$ and $X_{1} \Perp X_{2}$

$$
X_{1}+X_{2} \sim \mathcal{N}_{d}\left(\xi_{1}+\xi_{2}, \Sigma_{1}+\Sigma_{2}\right)
$$

To see this, just note that

$$
\lambda^{\top}\left(X_{1}+X_{2}\right)=\lambda^{\top} X_{1}+\lambda^{\top} X_{2}
$$

and use the univariate addition property.

Partition X into into X_{A} and X_{B}, where $X_{A} \in \mathcal{R}^{A}$ and
$X_{B} \in \mathcal{R}^{B}$ with $A \cup B=V$.
Partition mean vector, concentration and covariance matrix accordingly as
$\xi=\binom{\xi_{A}}{\xi_{B}}, \quad K=\left(\begin{array}{ll}K_{A A} & K_{A B} \\ K_{B A} & K_{B B}\end{array}\right), \quad \Sigma=\left(\begin{array}{ll}\Sigma_{A A} & \Sigma_{A B} \\ \Sigma_{B A} & \Sigma_{B B}\end{array}\right)$.
Then, if $X \sim \mathcal{N}(\xi, \Sigma)$ it holds that

$$
X_{B} \sim \mathcal{N}_{s}\left(\xi_{B}, \Sigma_{B B}\right)
$$

This follows simply from the previous fact using the matrix

$$
L=\left(0_{A B} I_{B}\right) .
$$

where $0_{A B}$ is a matrix of zeros and I_{B} is the $B \times B$ identity matrix.

Slide $27 / 37$

Linear transformations preserve multivariate normality:
If L is an $r \times d$ matrix, $b \in \mathcal{R}^{r}$ and $X \sim \mathcal{N}_{d}(\xi, \Sigma)$, then

$$
Y=L X+b \sim \mathcal{N}_{r}\left(L \xi+b, L \Sigma L^{\top}\right) .
$$

Again, just write

$$
\gamma^{\top} Y=\gamma^{\top}(L X+b)=\left(L^{\top} \gamma\right)^{\top} X+\gamma^{\top} b
$$

and use the corresponding univariate result.

If $\Sigma_{B B}$ is regular, it further holds that

$$
X_{A} \mid X_{B}=x_{B} \sim \mathcal{N}_{A}\left(\xi_{A \mid B}, \Sigma_{A \mid B}\right),
$$

where
$\xi_{A \mid B}=\xi_{A}+\Sigma_{A B} \Sigma_{B B}^{-1}\left(x_{B}-\xi_{B}\right) \quad$ and $\quad \Sigma_{A \mid B}=\Sigma_{A A}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A}$.
In particular, $\Sigma_{A B}=0$ if and only if X_{A} and X_{B} are independent.

To see this, we simply calculate the conditional density.

$$
\begin{aligned}
& f\left(x_{A} \mid x_{B}\right) \propto f_{\xi, \Sigma}\left(x_{A}, x_{B}\right) \\
& \quad \propto \exp \left\{-\left(x_{A}-\xi_{A}\right)^{\top} K_{A A}\left(x_{A}-\xi_{A}\right) / 2-\left(x_{A}-\xi_{A}\right)^{\top} K_{A B}\left(x_{B}-\xi_{B}\right)\right\} .
\end{aligned}
$$

The linear term involving x_{A} has coefficient equal to

$$
K_{A A} \xi_{A}-K_{A B}\left(x_{A}-\xi_{B}\right)=K_{A A}\left\{\xi_{A}-K_{A A}^{-1} K_{A B}\left(x_{B}-\xi_{B}\right)\right\}
$$

Using the matrix identities

$$
\begin{equation*}
K_{A A}^{-1}=\Sigma_{A A}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{A A}^{-1} K_{A B}=-\Sigma_{A B} \Sigma_{B B}^{-1} \tag{4}
\end{equation*}
$$

we find

$$
f\left(x_{A} \mid x_{B}\right) \propto \exp \left\{-\left(x_{A}-\xi_{A \mid B}\right)^{\top} K_{A A}\left(x_{A}-\xi_{A \mid B}\right) / 2\right\}
$$

and the result follows
From the identities (3) and (4) it follows in particular that then the conditional expectation and concentrations also can be calculated as

$$
\xi_{A \mid B}=\xi_{A}-K_{A A}^{-1} K_{A B}\left(x_{B}-\xi_{B}\right) \quad \text { and } \quad K_{A \mid B}=K_{A A}
$$

Note that the marginal covariance is simply expressed in terms of Σ whereas the conditional concentration is simply expressed in terms of K.

Further, since

$$
\xi_{A \mid B}=\xi_{A}-K_{A A}^{-1} K_{A B}\left(x_{B}-\xi_{B}\right) \quad \text { and } \quad K_{A \mid B}=K_{A A},
$$

X_{A} and X_{B} are independent if and only if $K_{A B}=0$, giving
$K_{A B}=0$ if and only if $\Sigma_{A B}=0$.
More generally, if we partition X into X_{A}, X_{B}, X_{S}, the conditional concentration matrix of $X_{A \cup B}$ given $X_{C}=x_{C}$ is simply

$$
K_{A \cup B \mid C}=\left(\begin{array}{ll}
K_{A A} & K_{A B} \\
K_{B A} & K_{B B}
\end{array}\right)
$$

so

$$
X_{A} \Perp X_{B} \mid X_{C} \Longleftrightarrow K_{A B}=0
$$

It follows that a Gaussian independence model is a compositional graphoid.

Consider $\mathcal{N}_{3}(0, \Sigma)$ with covariance matrix

$$
\Sigma=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

The concentration matrix is

$$
K=\Sigma^{-1}=\left(\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)
$$

The marginal distribution of $\left(X_{2}, X_{3}\right)$ has covariance and concentration matrix

$$
\Sigma_{23}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right), \quad\left(\Sigma_{23}\right)^{-1}=\frac{1}{3}\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) .
$$

The conditional distribution of $\left(X_{1}, X_{2}\right)$ given X_{3} has concentration and covariance matrix

$$
K_{12}=\left(\begin{array}{cc}
3 & -1 \\
-1 & 1
\end{array}\right), \quad \Sigma_{12 \mid 3}=\left(K_{12}\right)^{-1}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right) .
$$

Similarly, $\mathbf{V}\left(X_{1} \mid X_{2}, X_{3}\right)=1 / k_{11}=1 / 3$, etc.

Steffen Lauritzen — Markov Properties and the Multivariate Gaussian Distribution — Swiss Winterschool 2015 - Lecture Slide $33 / 37$

$\mathcal{S}(\mathcal{G})$ denotes the symmetric matrices A with $a_{\alpha \beta}=0$ unless $\alpha \sim \beta$ and $\mathcal{S}^{+}(\mathcal{G})$ their positive definite elements.
A Gaussian graphical model for X specifies X as multivariate normal with $K \in \mathcal{S}^{+}(\mathcal{G})$ and otherwise unknown.
Note that the density then factorizes as

$$
\log f(x)=\text { constant }-\frac{1}{2} \sum_{\alpha \in V} k_{\alpha \alpha} x_{\alpha}^{2}-\sum_{\{\alpha, \beta\} \in E} k_{\alpha \beta} x_{\alpha} x_{\beta},
$$

hence no interaction terms involve more than pairs..

Consider $X=\left(X_{v}, v \in V\right) \sim \mathcal{N}_{V}(0, \Sigma)$ with Σ regular and $K=\Sigma^{-1}$.
The concentration matrix of the conditional distribution of (X_{α}, X_{β}) given $X_{V \backslash\{\alpha, \beta\}}$ is

$$
K_{\{\alpha, \beta\}}=\left(\begin{array}{ll}
k_{\alpha \alpha} & k_{\alpha \beta} \\
k_{\beta \alpha} & k_{\beta \beta}
\end{array}\right)
$$

Hence

$$
\alpha \Perp \beta \mid V \backslash\{\alpha, \beta\} \Longleftrightarrow k_{\alpha \beta}=0 .
$$

Thus a regular Gaussian distribution is pairwise, local, and global Markov w.r.t. the graph $\mathcal{G}(K)$ given by

$$
\alpha \nsim \beta \Longleftrightarrow k_{\alpha \beta}=0 .
$$

Steffen Lauritzen — Markov Properties and the Multivariate Gaussian Distribution - Swiss Winterschool 2015 - Lecture 1 Slide $34 / 37$

Mathematics marks

Examination marks of 88 students in 5 different mathematical subjects. The empirical concentrations (on or above diagonal) and partial correlations (below diagonal) are

	Mechanics	Vectors	Algebra	Analysis	Statistics
Mechanics	5.24	-2.44	-2.74	0.01	-0.14
Vectors	0.33	10.43	-4.71	-0.79	-0.17
Algebra	0.23	0.28	26.95	-7.05	-4.70
Analysis	-0.00	0.08	0.43	9.88	-2.02
Statistics	0.02	0.02	0.36	0.25	6.45

Graphical model for mathmarks

This analysis is from Whittaker (1990)

We have An, Stats \Perp Mech, Vec \mid Alg.

Lauritzen, S. L. (1996). Graphical Models. Clarendon Press, Oxford, United Kingdom.
Studený, M. (2005). Probabilistic Conditional Independence Structures. Information Science and Statistics. Springer-Verlag, London.
Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. John Wiley and Sons, Chichester, United Kingdom.

