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Overview of lectures

Lecture 1 Markov Properties and the Multivariate
Gaussian Distribution

Lecture 2 Likelihood Analysis of Gaussian Graphical
Models

Lecture 3 Gaussian Graphical Models with Symmetry

For reference, if nothing else is mentioned, see Lauritzen
(1996), Chapters 3 and 4.
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We recall that two random variables X and Y are
independent if

P(X ∈ A |Y = y) = P(X ∈ A)

or, equivalently, if

P{(X ∈ A) ∩ (Y ∈ B)} = P(X ∈ A)P(Y ∈ B).

For continuous variables the requirement is a factorization of
the joint density:

fXY (x , y) = fX (x)fY (y).

When X and Y are independent we write X ⊥⊥Y .
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Formal definition

Random variables X and Y are conditionally independent

given the random variable Z if

L(X |Y ,Z ) = L(X |Z ).

We then write X ⊥⊥Y |Z (or X ⊥⊥P Y |Z )

Intuitively: Knowing Z renders Y irrelevant for predicting X .

Factorisation of densities:

X ⊥⊥Y |Z ⇐⇒ fXYZ (x , y , z)fZ (z) = fXZ (x , z)fYZ (y , z)

⇐⇒ ∃a, b : f (x , y , z) = a(x , z)b(y , z).
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For several variables, complex systems of conditional
independence can for example be described by undirected
graphs.

Then a set of variables A is conditionally independent of a

set B , given the values of a set of variables C , if C separates

A from B .

For example in picture above

1⊥⊥ {4, 7} | {2, 3}, {1, 2}⊥⊥ 7 | {4, 5, 6}.
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For random variables X , Y , Z , and W it holds

(C1) If X ⊥⊥Y |Z then Y ⊥⊥X |Z ;
(C2) If X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥U |Z ;
(C3) If X ⊥⊥Y |Z and U = g(Y ), then

X ⊥⊥Y | (Z ,U);

(C4) If X ⊥⊥Y |Z and X ⊥⊥W | (Y ,Z ), then
X ⊥⊥ (Y ,W ) |Z ;

If density w.r.t. product measure f (x , y , z ,w) > 0 also

(C5) If X ⊥⊥Y | (Z ,W ) and X ⊥⊥Z | (Y ,W ) then
X ⊥⊥ (Y ,Z ) |W .
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Conditional independence can be seen as encoding abstract
irrelevance: Knowing C , A is irrelevant for learning B ,

(C1)–(C4) translate into:

(I1) If, knowing C , learning A is irrelevant for
learning B , then B is irrelevant for learning A;

(I2) If, knowing C , learning A is irrelevant for
learning B , then A is irrelevant for learning any
part D of B ;

(I3) If, knowing C , learning A is irrelevant for
learning B , it remains irrelevant having learnt
any part D of B ;

(I4) If, knowing C , learning A is irrelevant for
learning B and, having also learnt A, D remains
irrelevant for learning B , then both of A and D

are irrelevant for learning B .

The property analogous to (C5) is slightly more subtle and
not generally obvious.
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An independence model (Studený, 2005) ⊥σ is a ternary
relation over subsets of a finite set V . It is graphoid if for all
subsets A, B , C , D:

(S1) if A⊥σ B |C then B ⊥σ A |C (symmetry);

(S2) if A⊥σ (B ∪ D) |C then A⊥σ B |C and
A⊥σ D |C (decomposition);

(S3) if A⊥σ (B ∪ D) |C then A⊥σ B | (C ∪ D)
(weak union);

(S4) if A⊥σ B |C and A⊥σ D | (B ∪ C ), then
A⊥σ (B ∪ D) |C (contraction);

(S5) if A⊥σ B | (C ∪ D) and A⊥σ C | (B ∪ D) then
A⊥σ (B ∪ C ) |D (intersection).

Semigraphoid if only (S1)–(S4). It is compositional if

(S6) if A⊥σ B |C and A⊥σ D |C then
A⊥σ (B ∪ D) |C (composition).
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Separation in undirected graphs

Let G = (V ,E ) be finite and simple undirected graph (no
self-loops, no multiple edges).

For subsets A,B , S of V , let A⊥g B | S denote that S
separates A from B in G, i.e. that all paths from A to B

intersect S .

Fact: The relation ⊥g on subsets of V is a compositional

graphoid.

This fact is the reason for choosing the name ‘graphoid’ for
such independence model.
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Probabilistic Independence Model

For a system V of labeled random variables Xv , v ∈ V , we
use the shorthand

A⊥⊥B |C ⇐⇒ XA⊥⊥XB |XC ,

where XA = (Xv , v ∈ A) denotes the variables with labels in
A.

The properties (C1)–(C4) imply that ⊥⊥ satisfies the

semi-graphoid axioms for such a system, and the graphoid

axioms if the joint density of the variables is strictly positive.

A regular multivariate Gaussian distribution defines a

compositional graphoid independence model, as we shall see
later.
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Geometric orthogonality

Let L, M, and N be linear subspaces of a Hilbert space H and

L ⊥ M |N ⇐⇒ (L� N) ⊥ (M � N),

where L� N = L ∩ N
⊥.L and M are said to meet

orthogonally in N.

(O1) If L ⊥ M |N then M ⊥ L |N;

(O2) If L ⊥ M |N and U is a linear subspace of L,
then U ⊥ M |N;

(O3) If L ⊥ M |N and U is a linear subspace of M,
then L ⊥ M | (N + U);

(O4) If L ⊥ M |N and L ⊥ R | (M + N), then
L ⊥ (M + R) |N.

Intersection does not hold in general whereas composition

(S6) does.
Steffen Lauritzen — Markov Properties and the Multivariate Gaussian Distribution — Swiss Winterschool 2015 — Lecture 1
Slide 11/37

un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

G = (V ,E ) simple undirected graph; An independence model
⊥σ satisfies

(P) the pairwise Markov property if

α �∼ β ⇒ α⊥σ β |V \ {α,β};

(L) the local Markov property if

∀α ∈ V : α⊥σ V \ cl(α) | bd(α);

(G) the global Markov property if

A⊥g B | S ⇒ A⊥σ B | S .
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Pairwise Markov property

3 6

1 5 7

2 4

✉ ✉
✉ ✉ ✉

✉ ✉
❅

❅❅

�
��

❅
❅❅

❅
❅❅

❅
❅❅

�
��

�
��

Any non-adjacent pair of random variables are conditionally
independent given the remaning.

For example, 1⊥σ 5 | {2, 3, 4, 6, 7} and 4⊥σ 6 | {1, 2, 3, 5, 7}.
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Local Markov property
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Every variable is conditionally independent of the remaining,
given its neighbours.

For example, 5⊥σ {1, 4} | {2, 3, 6, 7} and
7⊥σ {1, 2, 3} | {4, 5, 6}.
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Global Markov property
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To find conditional independence relations, one should look
for separating sets, such as {2, 3}, {4, 5, 6}, or {2, 5, 6}

For example, it follows that 1⊥σ 7 | {2, 5, 6} and
2⊥σ 6 | {3, 4, 5}.
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For any semigraphoid it holds that

(G) ⇒ (L) ⇒ (P)

If ⊥σ satisfies graphoid axioms it further holds that

(P) ⇒ (G)

so that in the graphoid case

(G) ⇐⇒ (L) ⇐⇒ (P).

The latter holds in particular for ⊥⊥ , when f (x) > 0.
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A d-dimensional random vector X = (X1, . . . ,Xd) has a
multivariate Gaussian distribution or normal distribution on
Rd if there is a vector ξ ∈ Rd and a d × d matrix Σ such
that

λ�
X ∼ N (λ�ξ,λ�Σλ) for all λ ∈ R

d . (1)

We then write X ∼ Nd(ξ,Σ).

Taking λ = ei or λ = ei + ej where ei is the unit vector with
i-th coordinate 1 and the remaining equal to zero yields:

Xi ∼ N (ξi ,σii ), Cov(Xi ,Xj) = σij .

Hence ξ is the mean vector and Σ the covariance matrix of
the distribution.
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The definition (1) makes sense if and only if λ�Σλ ≥ 0, i.e.
if Σ is positive semidefinite. Note that we have allowed
distributions with variance zero.

The multivariate moment generating function of X can be
calculated using the relation (1) as

md(λ) = E{eλ�X} = e
λ�ξ+λ�Σλ/2

where we have used that the univariate moment generating
function for N (µ,σ2) is

m1(t) = e
tµ+σ2t2/2

and let t = 1, µ = λ�ξ, and σ2 = λ�Σλ.

In particular this means that a multivariate Gaussian

distribution is determined by its mean vector and covariance

matrix.
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Assume X
� = (X1,X2,X3) with Xi independent and

Xi ∼ N (ξi ,σ2
i ). Then

λ�
X = λ1X1 + λ2X2 + λ3X3 ∼ N (µ, τ2)

with

µ = λ�ξ = λ1ξ1 + λ2ξ2 + λ3ξ3, τ2 = λ2
1σ

2
1 + λ2

2σ
2
2 + λ2

3σ
2
3.

Hence X ∼ N3(ξ,Σ) with ξ� = (ξ1, ξ2, ξ3) and

Σ =




σ2
1 0 0
0 σ2

2 0
0 0 σ2

3



 .
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If Σ is positive definite, i.e. if λ�Σλ > 0 for λ �= 0, the
distribution has density on Rd

f (x | ξ,Σ) = (2π)−d/2(detK )1/2e−(x−ξ)�K(x−ξ)/2, (2)

where K = Σ−1 is the concentration matrix of the
distribution. Since a positive semidefinite matrix is positive
definite if and only if it is invertible, we then also say that Σ
is regular.

If X1, . . . ,Xd are independent and Xi ∼ N (ξi ,σ2
i ) their joint

density has the form (2) with Σ = diag(σ2
i ) and

K = Σ−1 = diag(1/σ2
i ).

Hence vectors of independent Gaussians are multivariate

Gaussian.
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In the bivariate case it is traditional to write

Σ =

�
σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

�
,

with ρ being the correlation between X1 and X2. Then

det(Σ) = σ2
1σ

2
2(1− ρ2) = det(K )−1

and

K =
1

σ2
1σ

2
2(1− ρ2)

�
σ2
2 −σ1σ2ρ

−σ1σ2ρ σ2
1

�
.
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Thus the density becomes

f (x | ξ,Σ) = 1

2πσ1σ2
�

(1− ρ2)

×e
− 1

2(1−ρ2)

�
(x1−ξ1)

2

σ2
1

−2ρ
(x1−ξ1)(x2−ξ2)

σ1σ2
+

(x2−ξ2)
2

σ2
2

�

.

The contours of this density are ellipses and the
corresponding density is bell-shaped with maximum in
(ξ1, ξ2).
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The marginal distributions of a vector X can all be Gaussian
without the joint being multivariate Gaussian:

For example, let X1 ∼ N (0, 1), and define X2 as

X2 =

�
X1 if |X1| > c

−X1 otherwise.

Then, using the symmetry of the univariate Gausssian
distribution, X2 is also distributed as N (0, 1).
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However, the joint distribution is not Gaussian unless c = 0
since, for example, Y = X1 + X2 satisfies

P(Y = 0) = P(X2 = −X1) = P(|X1| ≤ c) = Φ(c)− Φ(−c).

Note that for c = 0, the correlation ρ between X1 and X2 is
1 whereas for c = ∞, ρ = −1.

It follows that there is a value of c so that X1 and X2 are

uncorrelated, and still not jointly Gaussian.
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Adding two independent Gaussians yields a Gaussian:

If X ∼ Nd(ξ1,Σ1) and X2 ∼ Nd(ξ2,Σ2) and X1⊥⊥X2

X1 + X2 ∼ Nd(ξ1 + ξ2,Σ1 + Σ2).

To see this, just note that

λ�(X1 + X2) = λ�
X1 + λ�

X2

and use the univariate addition property.
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Linear transformations preserve multivariate normality:

If L is an r × d matrix, b ∈ Rr and X ∼ Nd(ξ,Σ), then

Y = LX + b ∼ Nr (Lξ + b, LΣL�).

Again, just write

γ�Y = γ�(LX + b) = (L�γ)�X + γ�b

and use the corresponding univariate result.
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Partition X into into XA and XB , where XA ∈ RA and
XB ∈ RB with A ∪ B = V .
Partition mean vector, concentration and covariance matrix
accordingly as

ξ =

�
ξA
ξB

�
, K =

�
KAA KAB

KBA KBB

�
, Σ =

�
ΣAA ΣAB

ΣBA ΣBB

�
.

Then, if X ∼ N (ξ,Σ) it holds that

XB ∼ Ns(ξB ,ΣBB).

This follows simply from the previous fact using the matrix

L = (0AB IB) .

where 0AB is a matrix of zeros and IB is the B × B identity
matrix.
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If ΣBB is regular, it further holds that

XA |XB = xB ∼ NA(ξA|B ,ΣA|B),

where

ξA|B = ξA+ΣABΣ
−1
BB(xB−ξB) and ΣA|B = ΣAA−ΣABΣ

−1
BBΣBA.

In particular, ΣAB = 0 if and only if XA and XB are

independent.
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To see this, we simply calculate the conditional density.

f (xA | xB) ∝ fξ,Σ(xA, xB)

∝ exp
�
−(xA − ξA)�KAA(xA − ξA)/2− (xA − ξA)�KAB(xB − ξB)

�
.

The linear term involving xA has coefficient equal to

KAAξA − KAB(xA − ξB) = KAA
�
ξA − K

−1
AAKAB(xB − ξB)

�
.

Using the matrix identities

K
−1
AA = ΣAA − ΣABΣ

−1
BBΣBA (3)

and
K

−1
AAKAB = −ΣABΣ

−1
BB , (4)
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we find

f (xA | xB) ∝ exp
�
−(xA − ξA|B)

�
KAA(xA − ξA|B)/2

�

and the result follows.

From the identities (3) and (4) it follows in particular that
then the conditional expectation and concentrations also can
be calculated as

ξA|B = ξA − K
−1
AAKAB(xB − ξB) and KA|B = KAA.

Note that the marginal covariance is simply expressed in

terms of Σ whereas the conditional concentration is simply

expressed in terms of K .
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Further, since

ξA|B = ξA − K
−1
AAKAB(xB − ξB) and KA|B = KAA,

XA and XB are independent if and only if KAB = 0, giving
KAB = 0 if and only if ΣAB = 0.

More generally, if we partition X into XA,XB ,XS , the
conditional concentration matrix of XA∪B given XC = xC is
simply

KA∪B|C =

�
KAA KAB

KBA KBB

�
,

so
XA⊥⊥XB |XC ⇐⇒ KAB = 0.

It follows that a Gaussian independence model is a
compositional graphoid.
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Consider N3(0,Σ) with covariance matrix

Σ =




1 1 1
1 2 1
1 1 2



 .

The concentration matrix is

K = Σ−1 =




3 −1 −1
−1 1 0
−1 0 1



 .
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The marginal distribution of (X2,X3) has covariance and
concentration matrix

Σ23 =

�
2 1
1 2

�
, (Σ23)

−1 =
1

3

�
2 −1
−1 2

�
.

The conditional distribution of (X1,X2) given X3 has
concentration and covariance matrix

K12 =

�
3 −1
−1 1

�
, Σ12|3 = (K12)

−1 =
1

2

�
1 1
1 3

�
.

Similarly, V(X1 |X2,X3) = 1/k11 = 1/3, etc.
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Consider X = (Xv , v ∈ V ) ∼ NV (0,Σ) with Σ regular and
K = Σ−1.
The concentration matrix of the conditional distribution of
(Xα,Xβ) given XV \{α,β} is

K{α,β} =

�
kαα kαβ

kβα kββ

�
,

Hence
α⊥⊥β |V \ {α,β} ⇐⇒ kαβ = 0.

Thus a regular Gaussian distribution is pairwise, local, and

global Markov w.r.t. the graph G(K ) given by

α �∼ β ⇐⇒ kαβ = 0.

Steffen Lauritzen — Markov Properties and the Multivariate Gaussian Distribution — Swiss Winterschool 2015 — Lecture 1
Slide 34/37

un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

S(G) denotes the symmetric matrices A with aαβ = 0 unless
α ∼ β and S+(G) their positive definite elements.

A Gaussian graphical model for X specifies X as multivariate
normal with K ∈ S+(G) and otherwise unknown.

Note that the density then factorizes as

log f (x) = constant− 1

2

�

α∈V
kααx

2
α −

�

{α,β}∈E

kαβxαxβ ,

hence no interaction terms involve more than pairs..
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Mathematics marks

Examination marks of 88 students in 5 different
mathematical subjects. The empirical concentrations (on or
above diagonal) and partial correlations (below diagonal) are

Mechanics Vectors Algebra Analysis Statistics
Mechanics 5.24 −2.44 −2.74 0.01 −0.14
Vectors 0.33 10.43 −4.71 −0.79 −0.17
Algebra 0.23 0.28 26.95 −7.05 −4.70
Analysis −0.00 0.08 0.43 9.88 −2.02
Statistics 0.02 0.02 0.36 0.25 6.45
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Graphical model for mathmarks

Mechanics

Vectors

Algebra

Analysis

Statistics

✏✏✏✏✏✏

������ ✏✏✏✏✏✏

������❝
❝

❝
❝
❝

This analysis is from Whittaker (1990).

We have An, Stats⊥⊥Mech,Vec |Alg.
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