Summary of Previous Lectures

Sequential Monte Carlo Methods @ SMC allows us to sample approximately from {p (x1:¢| y1:t)};>; and

for Bayes|an Computatlon compute {p (yl;t)}tz:l fOI’ state—space models.
@ SMC are useful far beyond this class of models

o More general time series models
A. Doucet o General “static” Bayesian computation
e Some control problems
o Rare event simulation
Feb. 2015 @ We show here how to extend trivially SMC techniques previously

discussed to a general class of problems.
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Generic Problem Examples

o State-space models

t t

Ve (x:e) = p (xe, yree) = p O) TTF el xie—1) T T8 (o xc)

e Consider a sequence of probability distributions {7;}:>1 defined on a k=2 k=1
sequence of spaces {X;}¢>1 where X} = X', t t
e Each distribution 7t; (x1.¢) is assumed known up to a normalizing Ze =p (i) = / ’ -/;l () gf (x| xi-1) Hg (il i) dxaze

constant, i.e. . .
' @ General time series models

e (x1:t)
7 (x:e) = Z, e (x1:6) = p (X160 Y1:e)
. + D t t
where v; : Xy — IR™ can be computed p0|nth|se but Z; cannot. = 1 (x1) Hf (x| Yiok—1, Xt:k-1) Hg (Vi Yisk—1, X1:1)
@ SMC methods can be used to sample sequentially from {7t }+>1 and k=2 k=1
compute Z;. Z: = p (y1:t)

e Nonparametric Bayes: Wood & Griffiths, 2006; Caron & D., 2007,
Saeedi & Bouchard-Cété, 2011; Ahmed & Smola, 2012 etc.

e Graphical models, coalescent models, phylogenetic trees: Gorur
& Teh, 2008, Ihler, Frank, Smyth, 2009 etc.
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e Risk sensitive control (Kantas, 2009): o At time 1, you are interested in

t t
Ve (x1:e) = p(x1) 1_[ (x| xik—1) T T exp (€ (x«)) m(x) = rhz(xl).
t
Z:=E, |exp (Z C (Xk)>] e Introduce a distribution g (x1) easy to sample from and use
k=1

~wi(x1)qr(x) ~ m(x)

° Eigenmeasure/Eigenvalue (Heterington 1984): K (x,y) > 0 with m(a) = Z - w la) = q(x1)’
JK(x,y)dy #1Lv(y) =A [v(x)K(x,y)dx _
e Sample Xl(') ~q1(x1) thus G1 (1) = £ 2, (5X1(,-) (x1) and

t
’)’t(Xlt = U X1H Xt1Xt

i (i) O o (X0)
7/1\’1 (Xl): WI(S (i (Xl), WI X wp XI .
7t (x¢) — v (x) and 21, A ‘ Pox ' '

t
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SMC for General Target Distributions A General SMC Algorithm
@ Assume at time t — 1, we have {Wt(l—)l'Xl(:lt)—l} approximating Assume we have N weighted particles {Wt(i)l,Xl(ft)fl} approximating
TT—1 (Xlzt—l) . TT—1 (Xlzt—l) then at time t,

@ We introduce g; (x¢| x1.¢—1) and use o Sample )~<t(/) ~ <Xt| X1(;i2—1) set )?1(:/3 _ <X1(:it)_1,)~<t(i)) and
Tt (Xl:t) Wt (Xlzt) TTr—1 (Xlzt—l) at (X1| X1:t—1)

Tt (Xlzt) - Zt - Zt

N
X]_ t Z Wl(l JX (i) Xl:t) '

1:t

Wt() x Wt(L)IWt (Xl(lr) 1v)~<t(i)> )

where the incremental weight is

W, (Xlzt) — Tt (Xl:f)

Ye—1 (x1:e-1) qe (x| xi:e-1) Zr//ZT1 _ i W( )1Wt (Xl(i) . )N<t(i)>
- -1 :

e By sampling Xt(i) ~ gt (X¢| x1:4—1), we obtain

e If ESS< N/2 resample X1(;i2 ~ 7Tt (x1:t) and set Wt(i) — % to obtain

e (x1:t) = i W5 o ( W o W we (XU) 7 —LyN.s
t \X1:t) = 1:t x| (i) Xl:t) ) ¢ X WV W 1:t ) - TT¢ (Xl:t) =N Z,:l Xl(:) (Xlzt)-
i=1 Lt it
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Selection of the Proposal Application: Rao-Blackwellized SMC Methods

@ “A Good Monte Carlo is a Dead Monte Carlo”: Whenever you can

@ The proposal minimizing the variance of incremental weight integrate out analytically variables, do it.
e Example. Consider X; = (U, Z;) where

Wy (Xl-t) _ Yt (Xlzt) ~ Tt (Xlzt)
' Ye1 (x:e-1) Ge (Xe| Xe-1)  Te—1 (Xe-1) Ge (Xe| X1:e-1) U| Up—y ~ £ (+| Ue-1) .
i Zy = Ay, Zi—1+ By, Ve, Vi ~ N (0,1,),
iid.
qe™ (x| xue—1) = 7T (Xe x1:0-1) - Ye = CyZe+ Dy We, We '~ N (0,1,
o In this case, we have @ SIS can be used to approximate p ( xi.¢| y1:+) but this is inefficient as
Yt (Xlzt) 1% (Xl:t’ )/I:t) =p ( Ul:t‘ yl:t) P (Zl:t’ Yi:t, Ul:t)-
we (X1:¢) = we—1 (X1:6-1) opt h ~~ d
Ye—1 (X:e-1) qr- (Xe| x1:6-1) Gaussian
= w1 (xiet) Ve (X1:6-1) @ Rao-Blackwellized SIS methods target
= Wi t-1) 7 - : ;
Yt—1 (Xlzt—l) P ( Ul:t| Yl:t) X p (}/1:1.“’ Ul:t) P (Ulzt) instead of p (X1:t| Y1:t) (D, Godsill

& Andrieu, 2000; Liu & Chen, 2000). Also apply to dynamic Bayesian
nets (Murphy, D., De Freitas, Russell, 2000).
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Another Generic Sampling Problem Applications

o Let {rm:},., be a sequence of probability distributions defined on X
such that 7; (x) = 7; (x) and each 7, (x) is known up to a o Sequential Bayesian Inference: 1ty (x) = p (x| y1:t) -
normalizing constant, i.e. o Global optimization: 7t; (x) o [7t (x)]" with {#;} increasing
sequence such that #; — oco.

_ o1
e (%) = é“/ Z;(,’fl o Sampling from a fixed target 77 : 71, (x) o p (x) [g (y| x)]?* where u

unknown  known easy to sample and ¢ = 0, ¢ > ¢:—1 and ¢pp = 1.
@ Standard SMC do not apply as all the distributions are defined on the © Rare event simulation 7 (A) < 1: 7 (x) = 7 (x) 1y, (x) with Z
same space. known, X1 = X, Xy C X;_1 and Xp = A then Z7 = 1 (A).

@ It is possible to adapt SMC to this problem.
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Standard Approaches Some Potential Limitations

@ Run a MCMC (e.g. Metropolis-Hastings) algorithm to sample from
each target distribution 714; i.e. build a Markov kernel K; (x'| x) such
that

N /
e (x) = /X e (x) Ke (X'| x) dx e Convergence to 71; can be slow and is difficult to diagnose.

_ . ; 1 @ It does not give an estimate of Z; with ‘good’ properties.

and simulate a Markov chain {Xt( )}: Xt( )~ H: and ] ] ]
» (i—1) o If 7,1 and 7t; are ‘close’, then it should be possible to devise a
1 11—

Xt~ Ky <X/’ X ) . cleverer strategy.

@ Under weak assumptions, we have lim £ (Xp) = TT; i.e. Xt(i) is ® We can use instead importance Sampling.
1 —00

asymptotically distributed according to 7t; and

lim ! il ) (X,_f”) = /(p (x) 7t (x) dx.

n—oon 4
1=
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Importance Sampling Limitations of Importance Sampling

o Let the target distribution be 7 (x) = Z; ', (x) and p; be an
importance distribution then

we (x) g (x)
[ we (%) g (x) dx
Z = / wy (x) gr (x) dx @ For the estimates to have reasonable variances, we need to select very
carefully the importance distribution.

where w; (x) = Tt (X) e Importance Sampling (IS) is a straightforward method to use if g; is

qe (x) easy to sample.

T (x) =

e By sampling N i.i.d. particles Xt(i) ~ @; then o Naive strategies provide typically estimates with exponential variance
-~ N . . .
Gr (x) = % YN, 5Xt(,) (x) and in the dimension.
e For state-space models discussed previously, dim (X)) < 10 in most

R N 0 0 cases. For static problems, we often have dim (X) > 1000.
e (x) = ) W70, ) (x) where Wy o< w (Xt ) :
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General Principle Sequential Importance Sampling

@ At time 1, sample N (N > 1) particles Xl(i) ~ g1 to obtain the

@ “Philosophy”: Start by doing simple things before trying to do following IS estimates
complex things. N
@ Develop a sequential /iterative IS strategy where we start by m (x) = 2 Wl(')(SX@ (x) where Wl(') < Wy (Xl(')> ,
approximating a simple target distribution 7r1. Then targets evolve i=1 '
over time and we build the i{nportance distribution sequentially; i.e. 5 _ i i ” (X(i)>
at time t, we use g;_1 to build g;. 1= N i 1™
1=
@ This approach only makes sense if the sequence {7;} is not arbitrary;
i.e. 71,1 somewhat close to 7T;. @ Remark: Estimates have reasonable variance only if discrepancy

between 711 and p; small; hence the need to start with easy to sample
or approximate 7ty.
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Sequential Importance Sampling Some Potential Choices

@ At time t — 1, one has N particles {Xt(i)l, Wt(i)l}

o K (X'|x) = K;(x") with

(i e simple parametric form (e.g. Gaussian, multinomial etc.) (e.g. Cappé
X(’) q W(’) TT—1 <Xt—l> et al, 2005),
o1~ Ge-1(x) -an t-1 % M\ o semi-parametric based on i1 (x) (e.g. West, 1993; Titterington,
qi—1 (Xt—]_>
2001)
@ Move the particles according to transition kernel ® Ki (x| x) MCMC kernel of invariant distribution 7;.
_ _ e burn-in correction by importance sampling (Gilks & Berzuini, 2001;
X ke () X)) = g (¢) = /qH (x) Ke (x| x) dx Neal, 2001; Crisan & D., 2000).
e K; (x| x) approximation of a Gibbs sampler of invariant distribution
e Optimal transition kernel K; (x| x) = 7t; (x") cannot be used so we T

need alternatives.
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Sequential Importance Sampling Implementation Issues

) . .
n (Xl_ ) @ In most cases, we cannot compute the marginal importance
a1 (Xl(,)> distribution

: (i (1)
@ At time t > 2, sample X, K (X| Xt71> and set g (x¢) = /Qtfl (xe—1) Ke (x| Xe—1) dxe—s
iy _ m(x")
W (Xt ) = —— Where

o ()

q: (x') = /qt—l (x) Ke (x'] x) dx. @ Monte Carlo approximation is possible

o At time t =1, sample Xl(i) ~ q1 (x) and set w; (Xp) =
t
= /Ch (x1) T T Kie (x| xie—1) dxaze—1.
k=2

. - 1 v (i)
qt (Xt) = /qt—l (Xt—l) K: (Xt| Xt—l) dxi—1 = N Z K: (X| Xt_1>
i=1

i=1 i=1 but is computationally intensive O (NQ).
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An Artificial Target Distribution An Extended Target Distribution Trick.... Again
@ Problem summary: It is impossible to compute pointwise g; (x;) e Similarly at time t, g: (x¢) cannot be computed so perform
hence v¢ (x¢) /gt (x¢) except when t = 1. importance sampling on an extended space between
@ Solution: Perform importance sampling on extended space. ;
o At time 2, G (x1:t) = q1 (x2) T K (x| xe—1)
k=2
72 (X2) . 72 (Xz)
@ () [ a1 (x1) Ka (x| x1) dxi cannot be evaluated and an extended artificial joint target distribution
but alternative weights can be defined - =l
. o Te (x1:e) = 70 (xe) | ] Lic (] xu41)
new joint target distribution 715 (x2) Ly (x1] x2) k=1
joint importance distribution g1 (x1) K2 (x2| x1) where {Lx} is an arbitrary sequence of “backward” Markov kernels.
where Ly (x1| x2) is an arbitrary (backward) Markov kernel. e “Proof" of validity
@ "“Proof" of validity: 1

/ﬁt (Xlzt) dxi.t—1 = TT¢ (Xt) / H Ly (Xk| Xk+1) dxi.i—1 = 7T (Xt) .
k=1

(.

/7'[2 (Xg) L1 (X1’X2) dX1 = 702 (X2)/L1 (X1’X2) dX1 = 702 (Xz)

J/

=1 whatever being L; =1 whatever being {Lx}
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No Free Lunch

@ By extending the integration space, the variance of the importance
weights can only increase.

@ The optimal kernels {L?{pt} are the ones bringing us back to the case
where there is no space extension; i.e.

_ —1) Ki (Xe| xe—1)
[Pt (s o 1x) = at 1(Xt 1) t (Xt
tfl( t 1| f) qr (Xt)

@ The result follows straightforwardly from the forward-backward
formula for Markov processes

t

t
~ t
at (Xlzt) =q (Xl) H K (Xk| kal) = q: (Xt) H ngl (Xt—1| Xt)
k=2 k=2
° L‘;ﬁtl cannot typically be computed (though there are important
exceptions) but can be properly approximated in numerous cases.
@ Even if an approximation is used, the estimates are still asymptotically
consistent.

A. Doucet ()

Back to Standard SMC Methods

@ We need to sample from a sequence of (artificial) target distributions
{7t+} of increasing dimension.

o Conceptual difference: Given {K;}, {7;} has been constructed in a
“clever" way such that

/ﬁt (x1:t) dxi:e—1 = 7T¢ (x¢)

whereas usually the sequence of targets {7;} is fixed and {K;} is
designed accordingly.

o Because we typically cannot use {L"'}, the variance of the weights
typically increases over time and it is necessary to resample.
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e At time t = 1, sample Xl(i) ~ 1 () and set wy (Xl(i)> _

@ Resample {Xl(i), Wl(i)} to obtain new particles also denoted

—
2%
——

@ Attimet > 2

o sample X{" ~ K¢ (X" xt) .
(X7} ()
Ye-1 (Xt(i)l)Kr(Xt(i)‘Xf@l) .

® Resample {Xt(i): Wt(i)} to obtain new particles also denoted {Xt(i)} .

e compute w; <Xt(i)1,Xt(i)) =
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Monte Carlo Estimates
e We obtain

@ Ratio of Normalizing Constants

A: Ve (xe) Le—1 (Xe—1] xt)
- -1 (xe-1) K, 1) dxe1:
Zi1 Yt—-1 (Xt—l) Kt(Xt|Xt—1) ‘ 1(Xt 1) t(Xt|Xf 1) Xt—1:t
" (7) () (1)
/Zt\ — i W(I) Tt <Xt ) Lt*l <Xt—1‘ Xt )
Zi 1

o el (Xt@l) K; (xt(i) xt@1>.

@ This is a generalization of the celebrated Jarzynski-Crooks identity
(1997); see Neal (2001).
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o First step: Build a sequence of distributions {7t;} going from 71; easy @ We have observations yi.,, with

to sample/approximate to 71p = 71; e.g. 71, (x) o p (x) [g (y| x)]* )

where ji easy to sample and ¢ =0, ¢ > -1 and gp = 1. p(y|Hik, 01k, Wik) = E wiN (y; i, 0;)
e Second step: Introduce a sequence of transition kernels {K;}; e.g. i=1

K: MCMC sampler of invariant distribution 7;. o Assume that k — 4, w; — 1/k and 07 — 0.5 are known, 1.4 is

o Third step: Introduce a sequence of backward kernels {L;} uniform on the k-dimensional hypercube [—10 10]/(
L pino [ OPE. e

equal /approximating L¢™; e.g. e We simulate m = 100 observations for yt = p1.4 = (—3,0,3,6) and

e (1) Ke (xe)xeo1) want to sample from

Lot (Xe—1|xe) = {nltl(xl)m(xtx)di

Jff?;ziﬁ((fxﬁl:l) = f%fl(;’;ﬁé()xt‘x)dx P (k] yi:m) o p (1) P(Y1im [ Pack, 01k, Wik )

@ Invariance of the posterior to permutation of the labels of the
parameters gives it k! = 24 symmetric modes

Li1(xe—1]xt) = m(xt*l)}?(;tvhl)
TTe( X
’Yt(xt)Ltfl(Xt71|Xt) — t'Ytt(Xt—l)
Ye-1(e—1) Ke(xelxe—1) — Ye—1(xe-1)” @ Basic random-walk MCMC and importance sampling methods fail.
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Experimental Setups Running Times SMC Samplers: CPU vs GPU

@ We build the sequence of P distributions Table: Running times for the Sequential Monte Carlo Sampler for various values
of N.
Te(prk) < p (pak) [P(YLm |k, 01k, lek)]('bt
where ¢ =0 < ¢ <...<¢p =1 N CPU (mins) | 8800GT (secs) | Speedup | GTX280 (secs) | Speedup
@ MCMC sampler to sample from 7t; : update 1.4 via a MH kernel 8192 4.44 1.192 2235 0.597 446
with additive normal random walk. 16384 8.82 2.127 249 1.114 475
o We use 32768 17.7 3.995 266 2.114 502
7Te (xe—1) Ke (xe| xe-1) 65536 353 7.889 268 4.270 496
Leo1(xe1|x) = —) : 131072 706 15.671 270 8.075 525
262144 141 31.218 271 16.219 522
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Empirical Density

Figure: Estimated marginal posterior density p(¢1.2|y1:m) from SMC samples,

N — 8192 Figure: Effective number of SMC samples from each mode
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@ A powerful advantage of SMC samplers over MCMC is that they offer @ SMC methods can be used to sample from non-standard
more flexibility in terms of adaptation compared to adaptive MCMC high-dimensional distributions.
as no reliance on ergodicity. e This is a powerful alternative/complement to MCMC useful in

] Adaptive schedule {(Ibt}tzl can be built to ensure ESSt = OCESStfl. Comp|ex scenarios.

o Adaptive PI”OPOS_;?”S can be build; e.g. scaling of random walk can @ Very easily parallelizable and GPU implementations already available.
depend on {Xt(’ } @ Adaptive strategies can easily be implemented without affecting

@ Adaptive numbers of particles can be used. convergence.
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