
Sequential Monte Carlo Methods
for Bayesian Computation

A. Doucet

Feb. 2015

A. Doucet () Sequential Monte Carlo Methodsfor Bayesian Computation Feb. 2015 1 / 36

Summary of Previous Lectures

SMC allows us to sample approximately from {p (x1:t | y1:t )}t1 and
compute {p (y1:t )}t1 for state-space models.
SMC are useful far beyond this class of models

More general time series models
General “static” Bayesian computation
Some control problems
Rare event simulation

We show here how to extend trivially SMC techniques previously
discussed to a general class of problems.
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Generic Problem

Consider a sequence of probability distributions {πt}t1 defined on a
sequence of spaces {Xt}t1 where Xt = X t .

Each distribution πt (x1:t ) is assumed known up to a normalizing
constant, i.e.

πt (x1:t ) =
γt (x1:t )

Zt

where γt : Xt  R+ can be computed pointwise but Zt cannot.

SMC methods can be used to sample sequentially from {πt}t1 and
compute Zt .
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Examples

State-space models

γt (x1:t ) = p (x1:t , y1:t ) = µ (x1)
t

∏
k=2

f (xk | xk1)
t

∏
k=1

g (yk | xk ) ,

Zt = p (y1:t ) =

· · ·


µ (x1)

t

∏
k=2

f (xk | xk1)
t

∏
k=1

g (yk | xk ) dx1:t

General time series models

γt (x1:t ) = p (x1:t , y1:t )

= µ (x1)
t

∏
k=2

f (xk | y1:k1, x1:k1)
t

∏
k=1

g (yk | y1:k1, x1:k )

Zt = p (y1:t )

Nonparametric Bayes: Wood & Griths, 2006; Caron & D., 2007,
Saeedi & Bouchard-Côté, 2011; Ahmed & Smola, 2012 etc.
Graphical models, coalescent models, phylogenetic trees: Gorur
& Teh, 2008, Ihler, Frank, Smyth, 2009 etc.
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Examples

Risk sensitive control (Kantas, 2009):

γt (x1:t ) = µ (x1)
t

∏
k=2

f (xk | x1:k1)
t

∏
k=1

exp (C (xk ))

Zt = Eµ


exp


t

∑
k=1

C (xk )



Eigenmeasure/Eigenvalue (Heterington, 1984): K (x , y)  0 with
K (x , y) dy = 1, ν (y) = λ


ν (x)K (x , y) dx

γt (x1:t ) = µ (x1)
t

∏
k=2

K (xt1, xt ) ,

πt (xt ) ν (xt ) and
Zt+1
Zt

 λ
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SMC for General Target Distributions

At time 1, you are interested in

π1 (x1) =
γ1 (x1)
Z1

.

Introduce a distribution q1 (x1) easy to sample from and use

π1 (x1) =
w1 (x1) q1 (x1)

Z1
, w1 (x1) =

γ1 (x1)
q (x1)

.

Sample X (i )1  q1 (x1) thus q1 (x1) = 1
N ∑N

i=1 δ
X (i )1
(x1) and

π1 (x1) =
N

∑
i=1
W (i )
1 δ

X (i )1
(x1) , W

(i )
1 ∝ w1


X (i )1


.
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SMC for General Target Distributions

Assume at time t  1, we have

W (i )
t1,X

(i )
1:t1


approximating

πt1 (x1:t1) .

We introduce qt (xt | x1:t1) and use

πt (x1:t ) =
γt (x1:t )

Zt
=
wt (x1:t )πt1 (x1:t1) qt (x1| x1:t1)

Zt

where the incremental weight is

wt (x1:t ) =
γt (x1:t )

γt1 (x1:t1) qt (x1| x1:t1)
.

By sampling X (i )t  qt (xt | x1:t1), we obtain

πt (x1:t ) =
N

∑
i=1
W (i )
1:t δ

X (i )1:t
(x1:t ) , W

(i )
t ∝ W (i )

t1wt

X (i )1:t


.
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A General SMC Algorithm

Assume we have N weighted particles

W (i )
t1,X

(i )
1:t1


approximating

πt1 (x1:t1) then at time t,

Sample X (i )t  qt

xt |X

(i )
1:t1


, set X (i )1:t =


X (i )1:t1,

X (i )t

and

πt (x1:t ) =
N

∑
i=1
W (i )
1:t δ

X (i )1:t
(x1:t ) ,

W (i )
t ∝ W (i )

t1wt

X (i )1:t1,

X (i )t

,

Zt/Zt1 =
N

∑
i=1
W (i )
t1wt


X (i )1:t1,

X (i )t

.

If ESS< N/2 resample X (i )1:t  πt (x1:t ) and set W
(i )
t  1

N to obtain
πt (x1:t ) =

1
N ∑N

i=1 δ
X (i )1:t
(x1:t ).
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Selection of the Proposal

The proposal minimizing the variance of incremental weight

wt (x1:t ) =
γt (x1:t )

γt1 (x1:t1) qt (xt | x1:t1)
∝

πt (x1:t )

πt1 (x1:t1) qt (xt | x1:t1)

is
qoptt (xt | x1:t1) = πt (xt | x1:t1) .

In this case, we have

wt (x1:t ) = wt1 (x1:t1)
γt (x1:t )

γt1 (x1:t1) q
opt
t (xt | x1:t1)

= wt1 (x1:t1)
γt (x1:t1)

γt1 (x1:t1)
.
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Application: Rao-Blackwellized SMC Methods

“A Good Monte Carlo is a Dead Monte Carlo”: Whenever you can
integrate out analytically variables, do it.
Example. Consider Xt = (Ut ,Zt ) where

Ut |Ut1  f ( ·|Ut1) ,
Zt = AUtZt1 + BUtVt , Vt

i.i.d. N (0, Itv ) ,

Yt = CUtZt +DUtWt , Wt
i.i.d. N (0, Itw ) .

SIS can be used to approximate p (x1:t | y1:t ) but this is inecient as

p (x1:t | y1:t ) = p (u1:t | y1:t ) p (z1:t | y1:t , u1:t )  
Gaussian

.

Rao-Blackwellized SIS methods target
p (u1:t | y1:t ) ∝ p (y1:t | u1:t ) p (u1:t ) instead of p (x1:t | y1:t ) (D, Godsill
& Andrieu, 2000; Liu & Chen, 2000). Also apply to dynamic Bayesian
nets (Murphy, D., De Freitas, Russell, 2000).
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Another Generic Sampling Problem

Let {πt}t1 be a sequence of probability distributions defined on X
such that πt (x) = πt (x) and each πt (x) is known up to a
normalizing constant, i.e.

πt (x) = Z1t
unknown

.γt (x)   .
known

Standard SMC do not apply as all the distributions are defined on the
same space.

It is possible to adapt SMC to this problem.
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Applications

Sequential Bayesian Inference: πt (x) = p (x | y1:t ) .

Global optimization: πt (x) ∝ [π (x)]ηt with {ηt} increasing
sequence such that ηt  ∞.
Sampling from a fixed target π : πt (x) ∝ µ (x) [g (y | x)]φt where µ
easy to sample and φt = 0, φt > φt1 and φP = 1.

Rare event simulation π (A) 1: γt (x) = π (x) 1Xt (x) with Z1
known, X1 = X , Xt  Xt1 and XP = A then ZT = π (A) .
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Standard Approaches

Run a MCMC (e.g. Metropolis-Hastings) algorithm to sample from
each target distribution πt ; i.e. build a Markov kernel Kt (x | x) such
that

πt

x 

=


X
πt (x)Kt


x 
 x

dx

and simulate a Markov chain

X (i )t


: X (1)t  µt and

X (i )t  Kt

x |X (i1)t


.

Under weak assumptions, we have lim
i∞

L

X (i )t


= πt i.e. X

(i )
t is

asymptotically distributed according to πt and

lim
n∞

1
n

n

∑
i=1

ϕ

X (i )t


=


ϕ (x)πt (x) dx .
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Some Potential Limitations

Convergence to πt can be slow and is dicult to diagnose.

It does not give an estimate of Zt with ‘good’ properties.

If πt1 and πt are ‘close’, then it should be possible to devise a
cleverer strategy.

We can use instead importance Sampling.
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Importance Sampling

Let the target distribution be πt (x) = Z1t γt (x) and µt be an
importance distribution then

πt (x) =
wt (x) qt (x)
wt (x) qt (x) dx

where wt (x) =
γt (x)
qt (x)

,

Zt =

wt (x) qt (x) dx

By sampling N i.i.d. particles X (i )t  qt then
qt (x) = 1

N ∑N
i=1 δ

X (i )t
(x) and

πt (x) =
N

∑
i=1
W (i )
t δ

X (i )t
(x) where W (i )

t ∝ wt

X (i )t


,

Zt =
1
N

N

∑
i=1
wt

X (i )t


.
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Limitations of Importance Sampling

Importance Sampling (IS) is a straightforward method to use if qt is
easy to sample.

For the estimates to have reasonable variances, we need to select very
carefully the importance distribution.

Naive strategies provide typically estimates with exponential variance
in the dimension.

For state-space models discussed previously, dim (X ) < 10 in most
cases. For static problems, we often have dim (X ) > 1000.
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General Principle

“Philosophy”: Start by doing simple things before trying to do
complex things.

Develop a sequential/iterative IS strategy where we start by
approximating a simple target distribution π1. Then targets evolve
over time and we build the importance distribution sequentially; i.e.
at time t, we use qt1 to build qt .

This approach only makes sense if the sequence {πt} is not arbitrary;
i.e. πt1 somewhat close to πt .
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Sequential Importance Sampling

At time 1, sample N (N  1) particles X (i )1  q1 to obtain the
following IS estimates

π1 (x) =
N

∑
i=1
W (i )
1 δ

X (i )1
(x) where W (i )

1 ∝ w1

X (i )1


,

Z1 =
1
N

N

∑
i=1
w1

X (i )1



Remark: Estimates have reasonable variance only if discrepancy
between π1 and µ1 small; hence the need to start with easy to sample
or approximate π1.
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Sequential Importance Sampling

At time t  1, one has N particles

X (i )t1,W

(i )
t1



X (i )t1  qt1 (x) · and W
(i )
t1 ∝

πt1

X (i )t1



qt1

X (i )t1

 .

Move the particles according to transition kernel

X (i )t  Kt

x |X (i )t1


 qt


x 

=

qt1 (x)Kt


x 
 x

dx

Optimal transition kernel Kt (x | x) = πt (x ) cannot be used so we
need alternatives.
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Some Potential Choices

Kt (x | x) = Kt (x ) with
simple parametric form (e.g. Gaussian, multinomial etc.) (e.g. Cappé
et al, 2005);
semi-parametric based on µt1 (x) (e.g. West, 1993; Titterington,
2001)

Kt (x | x) MCMC kernel of invariant distribution πt .

burn-in correction by importance sampling (Gilks & Berzuini, 2001;
Neal, 2001; Crisan & D., 2000).

Kt (x | x) approximation of a Gibbs sampler of invariant distribution
πt .
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Sequential Importance Sampling

At time t = 1, sample X (i )1  q1 (x) and set w1

X (i )1


=

γ1

X (i )1



q1

X (i )1

 .

At time t  2, sample X (i )t  Kt

x |X (i )t1


and set

wt

X (i )t


=

γt

X (i )t



qt

X (i )t

 where

qt

x 

=

qt1 (x)Kt


x 
 x

dx .

We have

πt (x) =
N

∑
i=1
W (i )
t δ

X (i )t
(xt ) , Zt =

1
N

N

∑
i=1
wt

X (i )t


.
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Implementation Issues

In most cases, we cannot compute the marginal importance
distribution

qt (xt ) =

qt1 (xt1)Kt (xt | xt1) dxt1

=

q1 (x1)

t

∏
k=2

Kk (xk | xk1) dx1:t1.

Monte Carlo approximation is possible

qt (xt ) =

qt1 (xt1)Kt (xt | xt1) dxt1 =

1
N

N

∑
i=1
Kt

x |X (i )t1



but is computationally intensive O

N2

.
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An Artificial Target Distribution

Problem summary: It is impossible to compute pointwise qt (xt )
hence γt (xt ) /qt (xt ) except when t = 1.
Solution: Perform importance sampling on extended space.
At time 2,

π2 (x2)
q2 (x2)

=
π2 (x2)

q1 (x1)K2 (x2| x1) dx1
cannot be evaluated

but alternative weights can be defined

new joint target distribution
joint importance distribution

=
π2 (x2) L1 (x1| x2)
q1 (x1)K2 (x2| x1)

where L1 (x1| x2) is an arbitrary (backward) Markov kernel.
“Proof" of validity:


π2 (x2) L1 (x1| x2) dx1 = π2 (x2)


L1 (x1| x2) dx1

  
= π2 (x2)

=1 whatever being L1
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An Extended Target Distribution Trick.... Again

Similarly at time t, qt (xt ) cannot be computed so perform
importance sampling on an extended space between

qt (x1:t ) = q1 (x1)
t

∏
k=2

Kk (xk | xk1)

and an extended artificial joint target distribution

πt (x1:t ) = πt (xt )
t1

∏
k=1

Lk (xk | xk+1)

where {Lk} is an arbitrary sequence of “backward” Markov kernels.
“Proof" of validity

πt (x1:t ) dx1:t1 = πt (xt )

 t1

∏
k=1

Lk (xk | xk+1) dx1:t1

  
=1 whatever being {Lk }

= πt (xt ) .
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No Free Lunch

By extending the integration space, the variance of the importance
weights can only increase.
The optimal kernels


Loptk


are the ones bringing us back to the case

where there is no space extension; i.e.

Loptt1 (xt1| xt ) =
qt1 (xt1)Kt (xt | xt1)

qt (xt )

The result follows straightforwardly from the forward-backward
formula for Markov processes

qt (x1:t ) = q1 (x1)
t

∏
k=2

Kk (xk | xk1) = qt (xt )
t

∏
k=2

Loptt1 (xt1| xt )

Loptt1 cannot typically be computed (though there are important
exceptions) but can be properly approximated in numerous cases.
Even if an approximation is used, the estimates are still asymptotically
consistent.
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Back to Standard SMC Methods

We need to sample from a sequence of (artificial) target distributions
{πt} of increasing dimension.
Conceptual dierence: Given {Kt}, {πt} has been constructed in a
“clever" way such that


πt (x1:t ) dx1:t1 = πt (xt )

whereas usually the sequence of targets {πt} is fixed and {Kt} is
designed accordingly.

Because we typically cannot use

Loptk


, the variance of the weights

typically increases over time and it is necessary to resample.
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SMC Sampler

At time t = 1, sample X (i )1  µ1 (·) and set w1

X (i )1


=

γ1

X (i )1



q1

X (i )1

 .

Resample

X (i )1 ,W

(i )
1


to obtain new particles also denoted


X (i )1



At time t  2

sample X (i )t  Kt

X (i )t1, xt


.

compute wt

X (i )t1,X

(i )
t


=

γt

X (i )t


Lt1


X (i )t1

X (i )t


γt1

X (i )t1


Kt

X (i )t

X (i )t1
 .

Resample

X (i )t ,W

(i )
t


to obtain new particles also denoted


X (i )t


.
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Monte Carlo Estimates

We obtain

πt (x) =
N

∑
i=1
W (i )
t δ

X (i )t
(x) .

Ratio of Normalizing Constants

Zt
Zt1

=


γt (xt ) Lt1 (xt1| xt )
γt1 (xt1)Kt (xt | xt1)

πt1 (xt1)Kt (xt | xt1) dxt1:t

so
Zt
Zt1

=
N

∑
i=1
W (i )
t1

γt

X (i )t


Lt1


X (i )t1

X (i )t


γt1

X (i )t1


Kt

X (i )t

X (i )t1
 .

This is a generalization of the celebrated Jarzynski-Crooks identity
(1997); see Neal (2001).
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Guidelines...

First step: Build a sequence of distributions {πt} going from π1 easy
to sample/approximate to πP = π; e.g. πt (x) ∝ µ (x) [g (y | x)]φt
where µ easy to sample and φt = 0, φt > φt1 and φP = 1.

Second step: Introduce a sequence of transition kernels {Kt}; e.g.
Kt MCMC sampler of invariant distribution πt .

Third step: Introduce a sequence of backward kernels {Lt}
equal/approximating Loptt ; e.g.

Lt1 (xt1| xt ) =
πt1(xt1)Kt ( xt |xt1)

πt1(x )Kt ( xt |x )dx

 γt (xt )Lt1( xt1 |xt )
γt1(xt1)Kt ( xt |xt1)

= γt (xt )
γt1(x )Kt ( xt |x )dx

Lt1 (xt1| xt ) =
πt (xt1)Kt ( xt |xt1)

πt (xt )

 γt (xt )Lt1( xt1 |xt )
γt1(xt1)Kt ( xt |xt1)

= γt (xt1)
γt1(xt1)

.
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Bayesian Inference for Mixture Models

We have observations y1:m with

p(y |µ1:k , σ1:k ,w1:k ) =
k

∑
i=1
wiN (y ; µi , σi )

Assume that k = 4, wi = 1/k and σi = 0.55 are known, µ1:k is
uniform on the k-dimensional hypercube [10, 10]k .
We simulate m = 100 observations for µ = µ1:4 = (3, 0, 3, 6) and
want to sample from

p (µ1:k | y1:m) ∝ p (µ1:k ) p(y1:m |µ1:k , σ1:k ,w1:k ).

Invariance of the posterior to permutation of the labels of the
parameters gives it k ! = 24 symmetric modes
Basic random-walk MCMC and importance sampling methods fail.
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Experimental Setups

We build the sequence of P distributions

πt (µ1:k ) ∝ p (µ1:k ) [p(y1:m |µ1:k , σ1:k ,w1:k )]
φt

where φ1 = 0 < φ2 < ... < φP = 1.

MCMC sampler to sample from πt : update µ1:4 via a MH kernel
with additive normal random walk.

We use

Lt1 (xt1| xt ) =
πt (xt1)Kt (xt | xt1)

πt (xt )
.
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Running Times SMC Samplers: CPU vs GPU

Table: Running times for the Sequential Monte Carlo Sampler for various values
of N.

N CPU (mins) 8800GT (secs) Speedup GTX280 (secs) Speedup
8192 4.44 1.192 223.5 0.597 446
16384 8.82 2.127 249 1.114 475
32768 17.7 3.995 266 2.114 502
65536 35.3 7.889 268 4.270 496
131072 70.6 15.671 270 8.075 525
262144 141 31.218 271 16.219 522
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Figure: Estimated marginal posterior density p(µ1:2 |y1:m) from SMC samples,
N = 8192.
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Figure: Eective number of SMC samples from each mode
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Adaptive SMC Samplers

A powerful advantage of SMC samplers over MCMC is that they oer
more flexibility in terms of adaptation compared to adaptive MCMC
as no reliance on ergodicity.

Adaptive schedule {φt}t1 can be built to ensure ESSt = αESSt1.

Adaptive proposals can be build; e.g. scaling of random walk can
depend on


X (i )t


.

Adaptive numbers of particles can be used.
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Discussion

SMC methods can be used to sample from non-standard
high-dimensional distributions.

This is a powerful alternative/complement to MCMC useful in
complex scenarios.

Very easily parallelizable and GPU implementations already available.

Adaptive strategies can easily be implemented without aecting
convergence.
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